Современная биотехнология опирается на многие науки: генетику, микробиологию, биохимию, естествознание. Основным объектом их изучения являются бактерии и микроорганизмы. Многие проблемы в биотехнологиях решает именно применение бактерий. Сегодня область их использования в жизни человека настолько широка и разнообразна, что вносит неоценимый вклад в развитие таких отраслей, как:

  • медицина и здравоохранение;
  • животноводство;
  • растениеводство;
  • рыбная отрасль;
  • пищевая промышленность;
  • добыча полезных ископаемых и энергетика;
  • тяжелая и легкая промышленности;
  • септик;
  • экология.

Домашний йогурт

Здравоохранение и фармакология


Область применения бактерий в фармакологии и медицине настолько широка и значима, что их роль в лечении у человека многих заболеваний просто неоценима. В нашей жизни они необходимы при создании кровезаменителей, антибиотиков, аминокислот, ферментов, противовирусных и противораковых препаратов, пробы ДНК для диагностики, гормональных препаратов.

Неоценимый вклад в медицину сделали ученые, выявив ген, отвечающий за гормон инсулина. Вживив его в бактерию коли, получили выработку инсулина, спасая жизни многим больным. Японские ученые обнаружили бактерии, выделяющие вещество, уничтожающее зубной налет, тем самым предотвращая появление кариеса у человека.

Из бактерий-термофилов выводят ген, кодирующий ферменты, имеющие ценность в научных исследованиях, так как они нечувствительны к высоким температурам. При производстве витаминов в медицине используют микроорганизм Clostridium, получая при этом рибофлавин, выполняющий важную роль в здоровье человека.

Свойство бактерий вырабатывать антибактериальные вещества было применено при создании антибиотиков, решив проблему лечения многих инфекционных заболеваний, тем самым спасло жизнь не одному человеку.


oads/2015/03/tuberkuleznyj-rekombinantnyj-285x215.jpg 285w, https://probakterii.ru/wp-content/uploads/2015/03/tuberkuleznyj-rekombinantnyj.jpg 500w" sizes="(max-width: 300px) 100vw, 300px" />В фармакологии создание лекарственных препаратов и синтетических вакцин, куда входят иммунорегуляторы, алкалоиды, нуклеотиды и ферменты, также невозможно без микроорганизмов.

Животноводство

Для возрастания привесов и увеличения скорости роста молодых особей применяют белково-витаминные добавки, ферменты, их продуцентами являются фотосинтезирующие бактерии. Снижая таким способом расход кормов и повышая производительность. При производстве силоса применяют E.coli commune, Lactis aerogenes, являющиеся молочнокислыми микроорганизмами. Незаменимую аминокислоту лизин, используемую в качестве пищевой добавки в животноводстве, продуцируют из таких бактерий, как Corynebacterium glutamicum, Brevibacterium sp и Escherichia coli.

Применение бактерий распространено при создании высокопродуктивных пород, гормонов роста и пересадке оплодотворенной клетки. Препараты, созданные на основе Bac. subtilis и Bac. Licheniformis, используются в ветеринарии при лечении многих заболеваний.


Сельскохозяйственная отрасль

Использование пестицидов и удобрений в сельскохозяйственной отрасли приводит к негативному воздействию на микрофлору почвы. Для разрушения вредных веществ применяют аэробные и анаэробные бактерии.

Почвенные бактерииИспользование бактериальных удобрений способствует повышению урожайности. Из клеток Klebsiella и Chromatium получают бакпрепараты, удерживающие азот. Это дает возможность растениям усваивать азот, содержащийся в воздухе. Из Bacillus megathrtium получают фосфобактерин, повышающий содержание фосфора в почве и азота в зеленой массе. В качестве биозащиты растений от всевозможных вредителей разработаны микробиологические препараты на основе бактерий, которые не наносят вреда человеку.

Рыбная отрасль

Биотехнологии, применяемые в рыбных хозяйствах, позволяют создавать породы рыб, устойчивые ко многим заболеваниям, и породы с высокими темпами прироста. Также из продуцируемых бактерий в рыбной промышленности изготавливают кормовые добавки, ферменты и лекарственные препараты.

Пищевая индустрия


Широко применение биотехнологий в бродильной и пищевой промышленностях. Применение молочнокислых бактерий при изготовлении кефира, кумыса и кисломолочных продуктов способствует улучшению их вкуса и перевариваемости. Это достигается тем, что выделяемые ферменты разлагают молочный сахар на спирт и углекислоту. Для улучшения качества кондитерских изделий и сохранения свежести хлебобулочных в пищевой промышленности применяют ферменты, продуцируемые из Bac.subtilis. Молочнокислые бактерии под микроскопом

Добыча и переработка полезных ископаемых

Применение биотехнологий в добывающей промышленности позволяет существенно сократить расходы и энергетические затраты. Так, применение литотрофных бактерий (Thiobacillus ferrooxidous), с их способностью окислять железо, используется в гидрометаллургии. За счет бактериального выщелачивания из низкосодержащих пород добывают драгоценные металлы. Для увеличения добычи нефти применяют метансодержащие бактерии. При добыче нефти обычным способом из недр извлекается не более половины природных запасов, а с помощью микроорганизмов происходит более эффективное освобождение запасов.

Легкая и тяжелая индустрия


Микробиологическое выщелачивание используют в старых шахтах для получения цинка, никеля, меди, кобальта. В горнодобывающей промышленности для восстановительных реакций в старых шахтах применяют сульфаты бактерий, так как остатки серной кислоты несут разрушающие воздействия на опоры, материалы и окружающую среду. Анаэробные микроорганизмы способствуют основательному разложению органических веществ. Это свойство применяется для очистки воды в металлургической промышленности.
Биопрепараты для септиков

Человек использует бактерии при производстве шерсти, искусственной кожи, текстильного сырья, в парфюмерно-косметических целях.

Источник: probakterii.ru

Бактерии играют большую роль в биологически важных круговоротах веществ на Земле, осуществляя химические превращения, не доступные ни растениям, ни животным.


профитные бактерии обеспечивают минерализацию органических веществ, но вместе с тем они выполняют и отрицательную роль, вызывая гниение продуктов. Гниение — это разложение азотсодержащих веществ с выделением аммиака. Он встречается повсеместно, в результате чего земля очищается от трупов животных и растений, обеспечивая плодородие почв, но в то же время происходит порча продуктов питания. Процесс гниения сопровождается выделением СО2, аммиака и энергии, сероводорода, метана и др. При гниении образуются ядовитые вещества, поэтому употребление гниющих продуктов в пищу человеком или животным недопустимо. Молочнокслое брожение — анаэробное окисление сахара, молока или других углеводов в молочную кислоту. Осуществляется большой группой молочнокислых бактерий, которые используются для изготовления простокваши, кефира, кумыса, сметаны, сливочного масла, сыров. Другие — сбраживают сахара растений, третьи — используют в квашении огурцов, капусты, силосовании кормов. Образующаяся молочная кислота препятствует развитию гнилостных бактерий и обеспечивает сохранность сочных продуктов. Силосование кормов позволяет сохранить от порчи сочные корма, убирать растительную массу в любую погоду.

В сельском хозяйстве сапрофитные бактерии обогащают почву солями аммония, азотной и азотистыми кислотами, доступными для высших растений. (Это нитрифицирующие бактерии, азотофиксирующие и клубеньковые бактерии). Благодаря симбиозу с бактериями, бобовые играют важную роль в севооборотах, обеспечивая устойчивые урожаи.


Бактерии можно выращивать на дешевом сырье, отходах производства. Это особенность используется в народном хозяйстве — в микробиологической промышленности. Их используют для производства разнообразных органических веществ: столового уксуса, получают ферменты, лекарства и другие ценные вещества. Их используют в текстильной, кожевенной промышленности (вымачивание льна, кожи), в медицине.

Выводы.

1. Большая часть бактерий — сапрофиты, они разлагают органические вещества до минеральных, которые усваиваются растениями, и этим самым способствует круговороту веществ.
2. Жизнь на Земле была бы возможна без круговорота веществ, т.е. без деятельности бактерий.
3. Использование бактерий в производсве экономически выгодно: создаваемые ими органические вещества обходятся дешевле, чем при выращивании растений и животных.

Источник: studopedia.ru

Роль бактерий в медицине

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА ИХТИОЛОГИИ И ЭКОЛОГИИ Использование микробов в медицине Автор: студентка гр.10-ЭП Колесник М.В. Калининград 2012
 

Роль бактерий в медицине

Цель: Какие препараты получают с использованием микробов Какие микробы используются для лечения Задача: Какие направления деятельности направлены для лечения людей
 
Роль бактерий в медицине

Медицина — область научной и практической деятельности по исследованию нормальных и патологических процессов в организме человека, различных заболеваний и патологических состояний, их лечению, сохранению и укреплению здоровья людей
 
Роль бактерий в медицине

Производство антибиотиков Антибиотик — вещество микробного, животного или растительного происхождения, способное подавлять рост микроорганизмов или вызывать их гибель. Пенициллин — первый антибиотик, то есть антимикробный препарат, полученный на основе продуктов жизнедеятельности микроорганизмов. Он был выделен в 1928 году Александром Флемингом из штамма гриба вида Penicillium notatum на основе случайного открытия: попадание в культуру бактерий плесневого гриба из внешней среды оказывает бактерицидное действие на культуру бактерий.
 

Роль бактерий в медицине

Классификация антибиотиков Бета-лактамные антибиотики Группа пенициллинов получаются из колоний плесневого грибка Penicillium Группа цефалоспоринов Препараты: Цефалотин, Цефалексин, Цефазолин Препараты: Бензилпенициллин, Оксациллин, Ампициллин
 
Роль бактерий в медицине

Классификация антибиотиков Действие: Цефалоспорины обладают высокой активностью по отношению к широкому спектру различных микробов .Важным преимуществом антибиотиков из группы является их активность по отношению к микробам устойчивым к действию пенициллинов. действие пенициллинов связано с их способностью угнетать образование клеточной стенки бактерий и тем самым подавлять их рост и размножение Группа пенициллинов Группа цефалоспоринов используют для лечения ангины, скарлатины, пневмонии, раневых инфекций, гонореи, сифилиса используются в лечении многих инфекционных болезней
 

Роль бактерий в медицине

Антибиотики из группы макролидов Препараты:Эритромицин, Азитромицин, Рокситромицин Действие антибиотиков на бактерии бактериостатическое – антибиотики блокируют структуры бактерий, синтезирующие белки, в результате чего микробы теряют способность размножаться и расти. использования макролидов это лечения инфекций, вызванных внутриклеточными паразитами, лечение больных с аллергией на пенициллины и цефалоспорины, лечение детей раннего возраста, беременных женщин и кормящих матерей получаются из лучистых грибов Streptomyces globisporus streptomycini или других родственных микроорганизмов.
 
Роль бактерий в медицине

Препараты: Тетрациклин, Доксициклин, Окситетрациклин, Метациклин Антибиотики из группы тетрациклинов Действие антибиотиков из группы тетрациклинов бактериостатическое. Также как и макролиды тетрациклины способны блокировать синтез белков в клетках бактерий Широкое применение получили мази содержащие тетрациклин. Применяют для локального лечения бактериальных инфекций кожи и слизистых оболочек получаются из колоний плесневого грибка Penicillium
 
Роль бактерий в медицине

Препараты: Гентамицин, Мономицин, Стрептомицин, Неомицин. Антибиотики из группы аминогликозидов Спектр действия аминогликозидов чрезвычайно широк и включает даже возбудителей туберкулеза (Стрептомицин). Аминогликозиды используются для лечения тяжелых инфекционных процессов, связанных с массивным распространением инфекции: сепсис (заражение крови), перитониты. Также Аминогликозиды используются для локального лечения ран и ожогов получаются из лучистых грибов Streptomyces globisporus streptomycini или других родственных микроорганизмов.
 
Роль бактерий в медицине

Препарат: Левомицетин (Хлорамфеникол) Левомицетин Действие препарата: угнетает синтез бактериальных белков, а в больших дозах вызывает бактерицидный эффект. Применение: Левомицетин обладает широким спектром действия, однако его использование ограничено из-за риска развития серьезных осложнений получаются из лучистых грибов Streptomyces globisporus streptomycini или других родственных микроорганизмов
 
Роль бактерий в медицине

Препараты: Нистатин, Натамицин, Леворин Противогрибковые антибиотики Действие препарата: Противогрибковые антибиотики это группа химических веществ, способных разрушать мембрану клеток микроскопических грибков, вызывая их гибель Применение: Противогрибковые заболевания получаются из колоний плесневого грибка Penicillium
 
Роль бактерий в медицине

Производство вакцин Вакцина (от лат. vacca — корова) — медицинский или ветеринарный препарат, предназначенный для создания иммунитета к инфекционным болезням. Вакцина изготавливается из ослабленных или убитых микроорганизмов, продуктов их жизнедеятельности, или из их антигенов, полученных генно-инженерным или химическим путём.
 
Роль бактерий в медицине

ТИПЫ ВАКЦИН вакцины содержат живые ослабленные, убитые или инактивированные микроорганизмы вакцины основанные на очищенных компонентах микроорганизмов Вакцины основанные на белках, синтезированных с помощью метода рекомбинантных ДНК
 
Роль бактерий в медицине

Производство продуктов микробного синтеза гриб рода Candida (Candida albicans) получение витаминов В1, В2 Применяются для лечения заболеваний связанных с дефицитом витаминов группы В
 
Роль бактерий в медицине

«Дикие дрожжи» Pichia pastoris. получение витаминов группы В Применяются для лечения заболеваний связанных с дефицитом витаминов группы В
 
Роль бактерий в медицине

Метаногенные бактерии получение витамин В12 Применяются для лечения заболеваний связанных с дефицитом витаминов группы В
 
Роль бактерий в медицине

Заключение Микроорганизмы имеют огромное значение для медицины. С их помощью создаются антибиотики, вакцины, витамины. Антибиотики и вакцины широко применяются в медицине. Позволяет успешно лечить больных тяжелыми инфекционными заболеваниями и профилактировать инфекции. Cо времени своего открытия эти препараты спасли миллионы жизней. Производство витаминов играет существенную роль в сохранении здоровья человека.
 

Источник: mrmarker.ru

Бактерии и другие доядерные организмы (прокариоты) относятся к царству Дробянки.

Бактерии изучает наука микробиология (греч.микрос – маленький, логос – наука). Ископаемые бактерии найдены в осадочных породах Северной и Южной Америки, Западной Австралии (3,5 млрд.лет).

Бактерии — прокариоты, образующие самостоятельное царство (3000 видов). Открыты Левенгуком (1675 г).

Среда обитания: воздух, вода, почва, глубины земной коры, живые организмах. Бактерии обнаружены на дне океана (10 км), в нефтяных водах (1,7 км), в условиях высокого вакуума.

Распространение:меньше всего бактерий в воздухе (в местах скопления людей их больше); в водах рек вблизи городов – до 400тыс.в 1см3; в почве – до 100млн. в 1г гумуса; в 1см3 молока – более 3млрд.

Условия жизни: температура от +35С до +40С; достаточное количество воды и питательных ве-в, большинству необходим кислород (некоторые развиваются при температуре от -2С до +80С, губителен — прямой солнечный свет.

Строение и жизнедеятельность бактерий:

¨ состоят из одной клетки (хотя и встречаются нитевидные формы, включающие несколько клеток);

¨ по форме бактериальной клетки различают:

— кокки (шаровидной формы) — диплококки, стафилококки (в виде грозди), стрептококки (в виде цепочки);

— палочки (вид палочек) — кишечная, туберкулезная;

— вибрионы (в виде запятой) — холерный вибрион;

— спирохеты (извитые формы) — возбудители тифа, сифилиса.

¨ размеры бактерий0,2 – 0,5 мкм; среди бактерий встречаются неподвижные формы, у подвижных есть жгутики;

¨ движение бактерий – осуществляется с помощью жгутиков, которые представляют собой скрученные винтообразные нити; безжгутиковые перемещаются благодаря выбрасыванию слизи или вращению вокруг своей оси.

¨ клетка ограничена цитоплазматической мембраной; кнаружи от неё есть клеточная стенка, в которой есть жесткая решетка, образованная муреином (полисахариды + пептиды), которая придаёт форму, выполняет функцию защиты; у некоторых бактерий есть слизистая капсула из мурамовой, диаминопимелиновой кислот;

¨ в гиалоплазме находятся: рибосомы, включения, ферменты; органоидов имеющих мембранное строение нет, их функционально заменяют мезосомы — выпячивания цитоплазматической мембраны, на которых находятся окислительные ферменты, участвующие в процессе дыхания; в гиалоплазме могут быть гранулы запасных питательных ве-в – гликогена, белков и капли липидов.

¨ морфологически обособленное ядро отсутствует (нет ядрышка, ядерной оболочки, кариоплазмы, хромосом); наследственный материал представлен нуклеоидом — кольцевой молекулой ДНК, не связанной с белками;

¨ жизнедеятельность:

— высокая активность биохимических процессов;

— энергию для жизнедеятельности гетеротрофные бактерии получают в процессах дыхания; гниения; брожения;

— по типу диссимиляции бактерии бывают:

Аэробы — нуждающиеся в кислороде (окисление внутри органических ве-в кислородом с выделением углекислого газа, воды и хим. энергии (галлионелла, ризобиум);

Анаэробы — существуют в бескислородной среде (расщепление органических ве-в без участия кислорода с высвобождением энергии, при этом высвобождается энергии в 18 раз меньше, чем при дыхании; например, бактерии молочнокислого брожения, попав в молоко, образуют ферменты, разлагающие сахар, который они поглощают из молока; из каждой молекулы сахара образуется 2 молекулы молочной кислоты и химическая энергия):

С6Н12О6 =3Н6О3+ энергия.

Молочнокислое брожение происходит и при квашении капусты, смлосовании трав и т.п.

— по типу ассимиляции бактерии бывают:

Гетеротрофы — питаются органическими веществами:

· сапрофиты — питаются органическими веществами умерших организмов (бактерии гниения и брожения);

· паразиты — питаются органическими веществами живых организмов (болезнетворные бактерии);

Автотрофы — имеют минеральное питание, сами синтезируют органические вещества:

· фототрофы, использующие солнечный свет в качестве источника энергии (зеленые и пурпурные бактерии, имеют фотосинтезирующий пигмент зеленого цвета, но не хлорофилл); у них цитоплазматическая мембрана образует трубчатые или пластинчатые впячивания, где находится хлорофилл и происходит ф.с.

· хемотрофы, получающие энергию в ходе ОВР (серобактерии — окисляют сероводород и серу, железобактерии — окисляют Fe2+, нитрифицирующие — окисляют аммиак или нитриты)

2S + O2 à 2H2O + 2S+ E

2S + 3O2 + 2H2O à 2H2SO4 + E

4Fe2+ + O2 à 4Fe3+ +2O2- + E

2NH3 + 3O2 à 2HNO2 + 2H2O + E

2HNO2 + O2 à 2HNO3 + E

При неблагоприятных условиях происходит спорообразование: спора образуется внутри клетки бактерии (при этом 60% воды переходит в связанное состояние, протопласт сжимается и покрывается толстой оболочкой); оболочка клетки разрушается и спора освобождается.

В благоприятных условиях — споры набухают, оболочка разрывается и споры выходят наружу.

Размножение бактерий:

· простое деление клетки надвое (перед делением хромосома удваивается и каждая клетка получает по одной дочерней хромосоме; каждые 20-30мин. клетка приступает к делению в благоприятных условиях.

· делению клетки надвое может предшествовать половой процесс (коньюгация),

· почкование.

· Некоторые бактерии способны синтезировать вещества – пигменты разных цветов (белые, фиолетовые, цвета индиго, голубые, зеленые, желтые, красные, оранжевые) — бактерия серрация марцесценс вырабатывает пигмент ярко-красного цвета.

Роль бактерий в природе:

­ участвуют в круговороте веществ, являясь звеном цепи питания (бактерии гниения являются редуцентами в биогеценозах),

­ клубеньковые бактерии связывают атмосферный азот и синтезируют доступные растениям азотистые соединения, обогащая почву азотными удобрениями (бактерии рода Ризобиум, которые поглощают атмосферный азот и преобразуют его в соединения, легко усваеваемые растениями – особенно много белка в семенах фасоли и сои – до 40%);

­ участвуют в окислительно-восстановительной функции живого вещества биосферы (хемосинтетики);

­ бактерии вступают в симбиоз: в желудке (рубец) жвачных животных бактерии разлагают целлюлозу, в кишечнике млекопитающих синтезируют витамины;

­ участвуют в очистке сточных вод, где они выполняют ту же ф-цию, что и в почве.

Роль бактерий в с/х:

­ органические удобрения (навоз) обогащают почву после того, как будут разложены нитрифицирующими бактериями, которые переводят азотистые соединения в нитраты;

­ силосование (бактерии молочнокислого брожения);

­ порча сена;

­ заболевания животных и растений;

Роль бактерий в промышленности:

­ в пищевой: приготовление сыров (бактерии маслянокислого брожения), сметаны, кефира, масла, простокваши (молочнокислого брожения, которые сбраживают молочный сахар – лактозу до молочной кислоты, которая способствует сгусанию белка казеина, используемого при изготовлении сыра); при закваске капусты, засолке огурцов, помидор, получении уксусной кислоты используют ве-ва-консерванты (соль, сахар, уксус) и низкие температуры снижают активность бактерий, тормозят их рост и размножение;

­ в микробиологической (ферменты, витамины);

­ в обработке льна, кожи, шелка, кофе, какао, сушке табачных листьев, виноделии;

­ порча продуктов, материалов, книг, рукописей.

Роль бактерий в медицине:

­ некоторые препараты из сапрофитных бактерий применяют для нормализации функции ЖКТ;

­ вызывают заболевания человека (тиф, холеру, дифтерию, столбняк, туберкулез, чуму, пневмонию, бруцеллез, коклюш, скарлатина).

­

Пути попадания бактерий в организм человека:

· воздушно-капельный,

· контактно-бытовой,

· половой,

· алиментарный (с продуктами и Н2О),

· трансплацентарный,

· при несоблюдении асептики (при инъекциях).

Меры борьбы с болезнетворными бактериями:

Ø физические факторы (высушивание, замораживание, УФЛ; пастеризация (нагревание до 60-700 в течение 10-20 мин); стерилизация (нагревание до 120о под давлением в течение 30 мин);автоклавирование – спец. Обработка материалов и инструментов при высоком давлении и температуре в спец. плотно закрывающихся емкостях с металлическими стенками – автоклавах;

Ø химические факторы (формалин, Н2О2, спирт, хлорная известь, хлорамин, карболовая кислота, марганцовка) т. е. дезинфекция (уничтожение патогенных микробов);

Ø применение антибиотиков, вакцин, сывороток;

Ø санитарно-просветительная работа;

Ø закаливание.

Цианобактерии (греч. цианус – синий и бактерия).

Это группа фототрофных прокариотических организмов, окрашенных в основном в сине-зеленый цвет, они содержат хлорофилл. Возникли, вероятно, около 3 млрд. лет тому назад (считалось, что изменение в составе атмосферы архейской эры и накопление в ней кислорода связаны с фотосинтетической деятельноястью цианобактерий – строматолитов).

Распространены: пресноводные бассейны, в почве, в основании стволов деревьев, небольшое количество – в морях; некоторые – в горячих источниках, замерзших озерах Антарктики — залегают в воде ниже уровня постоянного льда на глубине 5м.

Форма бывает: округлой, эллиптической, цилиндрической и др.

Бывают одноклеточные, соединены в цепочки и очень немногие образуют округлые или неправильной формы колонии, в которых множество клеток покрыто общим слизистым чехлом; некоторые образуют нити длиной до 1м и способны наращивать большую биомассу; прикрепляются друг к другу только оболочками, или слизистыми капсулами, поэтому каждая клетка не зависит отдругих; жгутиков не имеют.

Строение цианобактерий такое же как и других бактерий; внутри клетки находятся пигменты: хлорофилл, каротин (оранжевый), фикоэритрин (красный), фикоцианин (синий), которые обеспечивают ф.с. и придают различную окраску, благодаря которой придают цвет среде при массовом размножении.

Цианобактерии поверхностного слоя воды пресных и морских водоемов в клетках имеют газовые вакуоли, регулирующие плавучесть и позволяют им оставаться в толще воды. При потере плавучести ( перепады температуры, нарушениях кислородного обмена), которой способствовало массовое размножение, всплывшие бактерии окрашивают воду в определенный цвет («цветение»), при этом цианобактерии выделяют химические ве-ва (токсичные), приводящие к гибели некоторые организмы.

У некоторых нитчатых цианобактерий есть специализированные клетки – гетероцисты с сильно утолщенными бесцветными оболочками (участвуют в размножении и фиксации азота).

Представители многих родов способны фиксировать атмосферный азот (поэтому в Азии рис долго произрастает на одном участке без применения удобрений); поэтому заселяют голые поверхности скал и бедные почвы; морские виды фиксируют четверть всего азота, поглощаемого морем.

Вступают в симбиоз с протистами, водорослями, мхами, грибами (при этом теряют оболоч

ку и выполняют ф-цию хлоропластов.

Размножение: одноклеточные и колониальные – путем деления клетки пополам; большинство нитчатых – делением участков нитей (нити распадаются в области гетероцист).

Количество видов: 2тыс. В Беларуси – роды микроцистис, осциллятория, анабена, носток и др.

Значение цианобактерий:

обогощают почву органическими ве-вами и азотом, а водоемы и воздух – кислородом;

— водные формы – корм для мелких животных и рыб;

— «поставщики» белковых ве-в, витаминов, пигментов и др.

 

 

Источник: studopedia.info

Биотехнология — медицине

В современной медицинской практике используется большое количество средств, получаемых благодаря жизнедеятельности микроорганизмов. Сюда относятся витамины, ферменты, генно-инженерные гормоны и интерфероны, заменители крови и, конечно же, антибиотики. Собственно, даже медицинский спирт — этот универсальный антисептик, народный анальгетик и антидепрессант — является продуктом бродильного метаболизма дрожжевых грибков. Традиционные и новые высокоэффективные, различные по структуре и механизму действия природные и химически модифицированные лекарственные препараты, в создании которых участвовали микроорганизмы, применяются для лечения различных заболеваний.

Когда лекарство опаснее болезни

В практике применения лекарственных средств врачу приходится встречаться с так называемыми побочными явлениями, которые могут развиваться наряду с основным действием лекарства и ограничивать возможности его применения. Побочные реакции особенно часто возникают в случаях применения лекарств, обладающих многосторонним фармакологическим эффектом (вспомним тот же этиловый спирт), тогда как цель лечения достигается благодаря использованию лишь некоторых сторон фармакодинамики данного лекарства.

Особенного внимания заслуживают в этом смысле антибиотики, поскольку они являются препаратами выбора при лечении большинства инфекционных заболеваний, а назначению антибиотиков далеко не всегда предшествует проведение необходимых микробиологических исследований. Нередки случаи нерационального применения антибиотиков широкого спектра действия, нарушения пациентами схем приема препаратов, а то и вовсе бесконтрольного самолечения. И даже при правильном использовании антибактериальное действие антибиотиков распространяется не только на патогенную, но и на нормальную микробную флору организма. Под действием антибиотиков гибнут бифидобактерии, лактобациллы, симбиотические штаммы кишечной палочки и другие полезные микробы. Освободившиеся экологические ниши тут же заселяют условно-патогенные бактерии и грибки (как правило, обладающие резистентностью к антибиотикам), которые до этого присутствовали на коже и в нестерильных полостях организма в незначительном количестве — их размножение сдерживалось нормальной микрофлорой. Антибиотикотерапия, например, может способствовать превращению мирных сапрофитных дрожжеподобных грибков Candida albicans (рис. 1), обитающих на слизистых оболочках полости рта, трахеи и кишечника, в бурно размножающиеся микроорганизмы, вызывающие ряд местных и общих поражений.

В основе других побочных эффектов могут лежать индивидуальные особенности взаимодействия организма с антибиотиком: непереносимость препарата может иметь аллергическую или псевдоаллергическую природу, быть следствием ферментопатий или попадать в загадочную категорию идиосинкразий (до выяснения механизма непереносимости).

Пробиотики вместо антибиотиков?

В настоящее время перед медицинской наукой и органами охраны здоровья всего мира стоит ответственная задача — создание эффективных антибактериальных препаратов, вызывающих как можно менее выраженные побочные реакции.

Одним из возможных решений проблемы является разработка и широкое фармакотерапевтическое использование препаратов на основе живых культур представителей нормальной микрофлоры (пробиотиков) для коррекции микробиоценозов человека и для лечения патологических состояний. Применение бактериальных препаратов основано на понимании роли нормальной микрофлоры организма в процессах, обеспечивающих неспецифическую резистентность к инфекциям, в формировании иммунного ответа, а также на установлении антагонистической роли нормофлоры и ее участия в регуляции метаболических процессов [1].

Основоположником теории пробиотиков считают И.И. Мечникова. Он полагал, что сохранение здоровья человека и продление молодости во многом зависит от обитающих в кишечнике молочнокислых бактерий, способных подавлять процессы гниения и образования токсичных продуктов. Еще в 1903 году Мечников предложил практическое использование микробных культур—антагонистов для борьбы с болезнетворными бактериями.

По некоторым данным, термин «пробиотики» был введен Вернером Коллатом в 1953 году, затем его неоднократно и по-разному толковали как ученые, так и регулирующие организации. Коллат назвал пробиотиками вещества, необходимые для развития здорового организма, своего рода «промоторы жизни» — в противоположность антибиотикам. С концовкой этого утверждения соглашались также Лилли и Стилвелл, которым часто приписывают изобретение термина, однако они уточняли, что пробиотики представляют собой вещества, вырабатываемые одними микроорганизмами и стимулирующие рост других. Подавляющее же большинство определений вращалось вокруг принятия жизнеспособных микробов с целью модуляции кишечной микрофлоры. Согласно консенсусной трактовке экспертного совета ВОЗ и ФАО, пробиотики представляют собой живые микроорганизмы, которые при принятии в достаточном количестве приносят пользу здоровью. Существенный вклад в развитие современной концепции пробиотиков внес известный биохимик, специалист по питанию животных Марсель Ванбелле [2]. Т.П. Лайонс и Р.Дж. Фэллон в 1992 году назвали наше время «наступающей эпохой пробиотиков» (и не ошиблись, судя по невероятному росту их продаж — Ред.) [1].

По сравнению с традиционными антибактериальными препаратами пробиотики имеют ряд преимуществ: безвредность (однако не при всех диагнозах и не для всех пациентов — Ред.), отсутствие побочных реакций, аллергизации и отрицательного воздействия на нормальную микрофлору. В то же время авторы ряда исследований связывают прием этих биопрепаратов с выраженным клиническим эффектом при лечении (долечивании) острых кишечных инфекций. Важной особенностью пробиотиков, по некоторым данным, является их способность модулировать иммунные реакции, оказывать в ряде случаев противоаллергическое действие, регулировать пищеварение.

В настоящее время в медицине широко используют ряд подобных бактериальных препаратов. Одни из них содержат бактерии, постоянно обитающие в организме человека («Лактобактерин», «Бифидумбактерин», «Колибактерин», «Бификол»), другие состоят из микроорганизмов, не являющихся «резидентами» человеческого тела, но способных на определенное время колонизировать слизистые оболочки или раневые поверхности, создавая на них защитную биопленку (рис. 2) и вырабатывая вещества, губительные для патогенных бактерий. К таким препаратам относятся, в частности, «Биоспорин» на основе сапрофитной бактерии Bacillus subtilis и «А-бактерин», состоящий из живых клеток зеленящего аэрококка — Aerococcus viridans [1].

Полезный микроб — аэрококк

Некоторых аэрококков (рис. 3) относят к условно-патогенным микробам, поскольку они способны вызывать заболевания у животных (например, гаффкемию у омаров) и людей с иммунодефицитами. Аэрококки часто обнаруживаются в воздухе больничных палат и на предметах медицинского назначения, выделяются от больных со стрептококковыми и стафилококковыми инфекциями и к тому же имеют определенное морфологическое сходство с этими опасными бактериями.

Но коллективу кафедры микробиологии Днепропетровской медицинской академии удалось выявить среди аэрококков штамм не просто безвредный для человека, но и проявляющий выраженную антагонистическую активность в отношении широкого спектра возбудителей инфекционных болезней. Так был разработан и внедрен препарат, не имеющий аналогов в мировой практике, — пробиотик «А-бактерин» для наружного и перорального применения, который не уступает по своему воздействию на микрофлору человека дорогостоящим препаратам антибиотического направления (рис. 4).

Антагонистические свойства аэрококков связаны с продукцией перекиси водорода (вещества, широко применяемого в медицине в качестве антисептика) — стабильным признаком производственного штамма А. viridans, из которого готовится «А-бактерин». Другим бактерицидным веществом, продуктом метаболизма аэрококков, является супероксидный радикал (рис. 5), образуемый этими бактериями при окислении молочной кислоты. Причем способность аэрококков окислять молочную кислоту очень важна в случае применения препарата в стоматологии, так как одной из причин кариеса является молочная кислота, образуемая стрептококками.

В культуральной жидкости аэрококков был выявлен низкомолекулярный кислотоустойчивый и термостабильный пептид виридоцин, обладающий широким спектром антагонистической активности в отношении тех микроорганизмов, которые чаще всего вызывают госпитальные инфекции и участвуют в формировании физиологического и патологического микробиоценоза кишечника человека [3]. Кроме того, А. viridans продуцирует во внешнюю среду пептид аэроцин*, способный убивать дрожжеподобные грибки. Использование «А-бактерина» с йодидом калия и этонием эффективно при урогенитальных кандидозах, так как обеспечивает направленное повреждение мембран кандид [4, 5]. Тот же эффект достигается в случае применения препарата как средства профилактики кандидозов, возникающих, например, вследствие угнетения иммунитета при ВИЧ-инфекции [1, 6, 7].

* — Наряду с продукцией перекиси водорода (за счет НАД-независимой лактатдегидрогеназы), а в присутствии иодида калия и образованием гипойодида (за счет глутатионпероксидазы) с более выраженным, чем у пероксида водорода, бактерицидным действием, аэрококки располагают и неоксидными компонентами антагонистической активности. Они образуют низкомолекулярный термостабильный пептид аэроцин, относящийся к классу микроцинов, активный в отношении протеев, стафилококков, эшерихий и сальмонелл. Аэроцин был выделен из культуральной жидкости методами высаливания, электродиализа и бумажной хроматографии, после чего был установлен его аминокислотный состав и показана терапевтическая эффективность при экспериментальной сальмонеллезной инфекции у мышей [8]. Аэрококкам также свойственна адгезия к эпителиальным и некоторым другим клеткам, то есть противодействие патогенным бактериям идет в том числе на уровне биопленок и колонизационной резистентности.

Кроме способности подавлять размножение патогенных бактерий, «А-бактерин» способствует регенерации поврежденной ткани, проявляет адъювантное действие, стимулирует фагоцитоз и может быть рекомендован больным, сенсибилизированным к антибиотикам и химиотерапевтическим средствам. Сегодня «А-бактерин» успешно применяется для лечения ожоговых и хирургических ран, для профилактики и лечения диареи, а также в стоматологической, урологической и гинекологической практике. Перорально «А-бактерин» используется для коррекции микрофлоры кишечника, профилактики и лечения кишечных инфекций, коррекции отдельных биохимических показателей (холестеринового профиля и уровня молочной кислоты) и активации иммунитета [1]. Другие пробиотики тоже широко применяются для лечения и профилактики кишечных инфекций, особенно у детей раннего возраста, находящихся на искусственном вскармливании [9]. Пользуются популярностью и пищевые продукты, содержащие живые пробиотические культуры.

Лечебные вирусы

Как оказалось, в терапевтических целях может быть использовано не только явление микробного антагонизма, но и паразитизма. Патогенные бактерии паразитируют в организме человека, но и они, в свою очередь, являются хозяевами для еще более мелких паразитов — бактериофагов. Применение фагов в медицине основано на их высокой специфичности. Каждый вид фагов способен размножаться только в клетках определенной группы бактерий (рис. 6). Бактериофаги принципиально не способны повреждать человеческие клетки, и кроме того, бактерии-симбионты человека и патогенные бактерии обычно восприимчивы к разным фагам.

При лечении инфекций важно создать высокую концентрацию антимикробного препарата именно в месте локализации возбудителя. Применяя антибиотики в виде таблеток или инъекций, добиться этого довольно трудно. Но в случае фаготерапии достаточно, если в инфекционный очаг доберутся хотя бы одиночные бактериофаги. Обнаружив патогенные бактерии и проникнув в них, фаги начинают очень быстро размножаться. С каждым циклом размножения, который длится около получаса, количество фагов возрастает в десятки, а то и сотни раз. После разрушения всех клеток возбудителя фаги более не способны размножаться и, благодаря своим мелким размерам, беспрепятственно выводятся из организма вместе с другими продуктами распада.

Пробиотики и фаги вместе

Бактериофаги хорошо зарекомендовали себя в профилактике и лечении кишечных инфекций и гнойно-воспалительных процессов. Возбудители этих заболеваний часто приобретают устойчивость к антибиотикам, но остаются чувствительными к фагам [10]. В последнее время ученых заинтересовала перспектива совместного использования бактериофагов и пробиотиков. Предполагается, что при назначении такого комплексного препарата сначала фаг уничтожает патогенные бактерии, а потом освободившуюся экологическую нишу заселяют полезные микроорганизмы, формируя стабильный микробиоценоз с высокими защитными свойствами. Такой подход уже был опробован на сельскохозяйственных животных [11]. Вероятно, он войдет и в медицинскую практику.

Возможно и более тесное взаимодействие в системе «бактериофаг + пробиотик». Известно, что бактерии — представители нормальной микрофлоры человека — способны адсорбировать на своей поверхности различные вирусы, не позволяя им проникнуть в клетки человека [9]. Оказалось, что таким же образом могут адсорбироваться и бактериофаги: они не способны внедриться в клетку устойчивой к ним бактерии, но используют ее как «транспортное средство» для перемещения в организме человека. Такое явление получило название транслокации бактериофагов.

Внутренняя среда организма, его ткани и кровь считаются стерильными. На самом деле через микроскопические повреждения слизистых оболочек бактерии-симбионты периодически проникают в кровяное русло (рис. 7), хотя и быстро там уничтожаются клетками иммунной системы и бактерицидными веществами [12]. При наличии инфекционного очага барьерные свойства окружающих тканей часто нарушены, их проницаемость возрастает. Это повышает вероятность проникновения туда циркулирующих пробиотических бактерий вместе с прикрепившимися к ним фагами [13, 14]. В частности, у людей с инфекциями мочевыводящих путей, принимающих «А-бактерин» перорально, аэрококки обнаруживались в моче, причем их количество было стабильно низким, что говорило именно о переносе аэрококков, а не об их размножении в этих органах [15]. Аэрококки и наиболее распространенные возбудители урологических инфекций относятся к совершенно разным группам бактерий, а значит, чувствительны к разным бактериофагам. Это открывает интересные перспективы для создания комплексного препарата, например, на основе А. viridans и фагов, поражающих кишечные бактерии [16]. Такие разработки ведутся на кафедре микробиологии Днепропетровской медицинской академии, однако они пока не вышли за стадию лабораторного исследования.

Статья написана при участии Юргель Л.Г. и Кременчуцкого Г.Н.

Источник: biomolecula.ru

Роль бактерий в медицине

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector