Дрожжи представляют собой одноклеточные неподвижные организмы. Они могут быть различной формы: эллиптической, овальной, шаровидной и палочковидной (рис.1). Длина клеток колеблется от 5 до 12 мкм, ширина — от 3 до 8 мкм.
Форма и размеры дрожжевых клеток непостоянны и зависят от рода и вида, а также от условий культивирования, состава питательной среды и других факторов. Более стабильны молодые клетки, поэтому для характеристики дрожжей используют молодые культуры.

Дрожжевая клеткасостоит из клеточной оболочки, прилегающей к ней цитоплазматической мембраны, цитоплазмы или протоплазмы, внутри которой расположены органоиды и включения (запасные вещества) в виде капелек жира, зерен гликогена и волютина.
Клеточная оболочка — тонкая, плотная и эластичная. Она сохраняет форму клеток, регулирует обменные процессы, поддерживает внутриклеточное осмотическое давление. Через нее поступают в клетку вещества, необходимые для ее питания и роста, и выводятся наружу продукты обмена.


r /> Цитоплазматическая мембрана служит осмотическим барьером клетки. Она состоит из нуклеиновых кислот, протеинов и полисахаридов.
Цитоплазма клетки выглядит однородной. В ней осуществляются жизненно важные процессы обмена веществ. Она обладает избирательной способностью к восприятию тех или иных веществ. Так, например, она не воспринимает сахарозу из раствора, тогда как глюкоза, фруктоза, органические кислоты и минеральные соли проходят свободно. В цитоплазме происходят сложные превращения поступивших веществ: часть их расходуется на образование самой цитоплазмы и оболочки клетки, часть служит источником энергии, необходимой для жизненных процессов.
Ядро – органоид клетки – находится в цитоплазме и является носителем наследственных свойств организма. Оно имеет вид округлого или овального пузырька диаметром около 2 мкм, окруженного очень тонкой оболочкой. Содержит прозрачную жидкость — нуклеоплазму и более плотную кариосому (ядрышко).
Ядро представляет собой конгломерат склеивающихся хромосом. Они неоднородны и состоят из зернистых и палочковидных структур. В зависимости от рода и вида дрожжей их может быть от 4 до 10-12. В ядрах обособлена в виде включений дезоксирибонуклеиновая кислота (ДНК). С ее помощью осуществляется передача наследственных признаков. При размножении ядро делится на 2 части, а при спорообразовании — на количество частей, соответствующее количеству образующихся спор.

r /> Митохондрии (хондриосомы) (рис.3) также являются органоидом клетки. Это мелкие структуры, имеющие формы зернышек, палочек или нитей. Они имеют двухслойную оболочку. Длина митохондрий 0,4-1,0, ширина 0,2-0,5 мкм.
Рибосомы представляют собой органоиды, в которых происходит синтез белка за счет активированных аминокислот, поступающих из митохондрий. Синтез белков осуществляется при помощи рибонуклеиновой кислоты (РНК), связанной с белком.
Вакуоль, отделенная от цитоплазмы липопротеидной мембраной, является обязательным органоидом клетки. В вакуолях содержатся белки, жиры, углеводы, органические и минеральные вещества в коллоидном состоянии и ферментные системы. Круглые дрожжевые клетки содержат одну вакуоль, продолговатые — две. Форма их непостоянна.
Жировые включения содержатся в вакуолях в виде мелких капель, которые увеличиваются с ростом клетки.

Источник: studopedia.ru

Дрожжевые клетки (рис. 16) имеют овальную, круглую, эллиптическую форму. Снаружи клетка покрыта оболочкой 1, под которой находится цитоплазматическая мембрана 2. Оболочка состоит из глюкана, азотосодержащих веществ и липидов. Она придает форму клетке, здесь осуществляется почкование. Оболочка функционирует как фильтр, пропускающий питательные вещества внутрь клетки и выводящий из клетки продукты обмена.


топлазматическая мембрана имеет белково-липидную природу. Она регулирует обмен питательных веществ и метаболитов, благодаря избирательной проницаемости. Проницаемость цитоплазматической мембраны активная: в первую очередь в клетку проходят легкоусвояемые вещества, даже если размер их молекул превышает размер молекул менее усвояемых веществ. Внутри клетки находится ядро 3, окруженное двойной пористой мембраной. Ядро регулирует и направляет процессы, обеспечивающие рост и размножение дрожжей. Ядро — хранилище генетической информации. Содержит ДНК, белки и ферменты, связанные с образованием ДНК и РНК. Основой клетки является цитоплазма 9, в которой находятся структурные элементы клетки: рибосомы 6, митохондрии 7, вакуоли 5. Рибосомы — мельчайшие частицы клетки, в них происходит синтез белка. Митохондрии — энергетические центры клетки, в которых осуществляется образование АТФ. Вакуоли 5 — полости, заполненные клеточным соком. Клеточный сок — водный раствор солей, углеводов, белков, жиров и ферментов. Чем старше клетка, тем больше в ней вакуолей. В дрожжевой клетке имеются также включения гликогена — резервного питательного вещества. На поверхности клетки в результате отпочкования дочерних клеток от материнской образуются рубцы 8.

Строение клетки дрожжей

 

Рис. 16. Строение дрожжевой клетки:

1 — оболочка; 2 — цитоплазматическая мембрана; 3 — ядро; 4 — включения гликогена; 5 — вакуоли;


6 — рибосомы; 7 — митохондрии; 8 — рубец; 9 — цитоплазма

 

 

Величина клеток зависит от возраста и физиологического состояния дрожжей. Чаще всего клетки имеют длину 9-11 мкм и ширину 5-7 мкм.

Химический состав дрожжей зависит от расы, состава питательной среды и физиологического состояния дрожжей. Отпрессованные дрожжи содержат 24-30 % сухих веществ и 76-70 % воды. Сухие вещества дрожжей на 90-95 % состоят из органических веществ, в состав которых входят азотистые вещества (35-65 %), безазотистые экстрактивные вещества (20-63 %), жир (2-5 %), минеральные вещества (5-11 %).

Азотистые вещества дрожжей представлены главным образом дрожжевыми белками, важнейшими из которых являются зимоказеин и церевизин. Основной представитель углеводов дрожжей — гликоген. Гликоген по химическому строению сходен с амилопектином крахмала, но имеет большую молекулярную массу и более компактную молекулу. Его содержание колеблется от 0 до 40 % массы сухих веществ и зависит от состава питательной среды. Запасным веществом дрожжей является жир, которого больше в старых клетках. Главные элементы минеральных веществ дрожжей — фосфор и калий. Фосфор входит в состав промежуточных продуктов спиртового брожения, а калий активизирует деятельность некоторых дрожжевых ферментов, а также оказывает решающее влияние на биосинтез белков и углеводов.


Дрожжевая клетка содержит большое количество ферментов, которые обеспечивают ее жизненные функции, участвуя в процессах дыхания, брожения, гидролиза и синтеза. Ферменты клетки подразделяются на эндо- и экзоферменты. Эндоферменты проявляют свое действие только внутри клетки. К ним относится, например, мальтаза, ферменты брожения и дыхания. Экзоферменты выделяются из клетки и действуют вне ее. Они предназначены для начальных этапов использования дрожжами питательных веществ. К ним относятся некоторые дрожжевые пептидазы и β-фруктофуранозидаза.

Дрожжи богаты витаминами группы В, содержат никотиновую кислоту, эргостерин, биотин и др.

Метаболизм дрожжевой клетки

Метаболизм — это обмен веществ дрожжевой клетки. Для роста и размножения клетка нуждается в питательных веществах, растворимых в воде. Эти вещества клетка потребляет и преобразует в необходимые для построения дрожжевых белков, углеводов, жиров, резервных веществ. Потребление и преобразование питательных веществ — ассимиляция сопровождается затратой энергии. Необходимая энергия образуется в клетке в результате диссимиляции — процессов преобразования и распада веществ, которые сопровождаются выделением энергии. Энергия накапливается в клетке в виде АТФ. Основными процессами образования в клетке АТФ являются дыхание и брожение. В анаэробных условиях пивоварения энергия в клетке образуется в результате спиртового брожения.


Для жизнедеятельности дрожжам необходимы углеводы, азотосодержащие и минеральные вещества, витамины, жирные кислоты.

Углеводы используются дрожжами как источник питания и источник энергии. Питание заключается в усвоении углеводов, их расщеплении и последующем синтезе в структурные элементы клетки (глюкан) и резервные вещества (гликоген). На эти цели расходуется примерно 2 % сахаров сусла. Основная доля сахаров подвергается спиртовому брожению, в результате которого в клетке накапливается энергия. При сбраживании сахаров образуется этиловый спирт и углекислый газ, которые, как продукты метаболизма, угнетающе действуют на дрожжи, но являются основными технологически важными веществами, превращающими сусло в пиво. Углеводы сбраживаются в определенной последовательности, обусловленной скоростью проникновения их в дрожжевую клетку. В первую очередь сбраживается глюкоза и фруктоза. Сахароза предварительно гидролизуется β-фруктофуранозидазой до глюкозы и фруктозы, которые быстро потребляются дрожжами в начале брожения. После усвоения глюкозы и фруктозы дрожжи начинают потреблять мальтозу, а затем — мальтотриозу. Для нормального протекания брожения в сусле должно содержаться достаточное количество легкосбраживаемых углеводов.

Для синтеза компонентов, обеспечивающих рост и размножение, дрожжам необходимы источники ассимилируемого азота. Дрожжи могут усваивать как органический, так и неорганический азот.


ожжи потребляют аммиачный азот в виде фосфатов и сульфатов аммония, аминокислоты, пептиды, пуриновые и пиримидиновые основания. Главную роль в азотистом обмене дрожжевой клетки играет прямая ассимиляция аминокислот сусла, обеспечивающая 70 % ассимилируемого азота. При достаточном содержании в сусле аминного азота наблюдаются быстрый рост дрожжей, высокая скорость сбраживания и низкое содержание в пиве высших спиртов. Аминокислоты потребляются дрожжами в определенной последовательности. В первую очередь ассимилируются такие кислоты, как аспарагин, серин, треонин и лизин, а последними потребляются аланин и пролин.

Размножение дрожжей

Размножение — увеличение в среде числа дрожжевых клеток.

Дрожжи размножаются почкованием. При этом на материнской клетке образуется почка, которая вырастает в дочернюю клетку. При неблагоприятных условиях дрожжи могут образовывать споры, которые впоследствии прорастают, образуя новые дрожжевые клетки. Пивное сусло содержит все необходимые вещества для размножения дрожжей, поэтому они размножаются только почкованием.

Размножение дрожжей при сбраживании сусла проходит в несколько этапов. Кривая роста имеет обычную для развития микроорганизмов S-образную форму, на которой можно выделить 4 фазы: латентную, логарифмическую, стационарную и фазу затухания. На латентной фазе дрожжи приспосабливаются к питательной среде и подготавливаются к размножению. Логарифмическая фаза характеризуется максимальной скоростью размножения дрожжей. На стационарной фазе скорость размножения и скорость отмирания дрожжей уравновешиваются, и число клеток остается без изменения. При снижении количества питательных веществ и увеличении в среде концентрации продуктов обмена размножение дрожжей прекращается, наступает фаза затухания.


Количество дрожжей в конце главного брожения увеличивается в 3-4 раза.

На размножение дрожжей влияет состав питательной среды. Способствуют размножению сахара, аминный азот, кислород сусла и замедляют размножение продукты метаболизма, такие как этиловый спирт и диоксид углерода. Процесс размножения существенно интенсифицируется при увеличении температуры брожения и при перемешивании бродящей среды. На размножение влияет рН сусла. Максимальное размножение низовых дрожжей наблюдается при рН 4,8-5,3. Замедляют размножение высокие концентрации сбраживаемых сахаров.

Флокуляция дрожжевых клеток

Флокуляция (агглютинация) — способность дрожжевых клеток собираться в хлопья. От флокуляционной способности дрожжей зависит степень сбраживания и скорость осветления пива. По способности флокулировать пивные дрожжи сгруппированы в 4 класса: пылевидные дрожжи, флокулирующие дрожжи первого класса, флокулирующие дрожжи второго класса, флокулирующие дрожжи третьего класса. Пылевидные дрожжи медленно образуют хлопья, состоящие из 10 и менее клеток. Флокулирующие дрожжи первого класса образуют хлопья, состоящие примерно из 1000 клеток, после сбраживания 2/3 экстракта. Флокулирующие дрожжи второго класса после сбраживания 2/3 экстракта образуют хлопья, содержащие несколько тысяч клеток. У флокулирующих дрожжей третьего класса процесс флокуляции начинается на ранних стадиях брожения. При производстве пива низового брожения используют флокулирующие дрожжи первого и второго класса.


В настоящее время существуют три гипотезы, объясняющие флокуляцию дрожжевых клеток.

Первая гипотеза предполагает, что флокуляция дрожжей связана с образованием ионных связей между ионами Са+2 сусла и ионами СООбелков двух соседних клеток. Эта структура дополнительно стабилизируется образованием водородных связей.

Вторая гипотеза объясняет флокуляцию образованием перекрестных соединений ионов Са+2 сусла с двумя фосфоманнановыми единицами соседних клеток. Водородные связи усиливают этот процесс. Маннано-белковый комплекс образует поверхностный слой дрожжевой клетки. Обнаружено, что у флокулирующих дрожжей комплекс более фосфорилирован, чем у нефлокулирующих.

Третья гипотеза (гипотеза Калюжного) предполагает, что клетки дрожжей окружены водной оболочкой и ионной сферой. При брожении под воздействием дегидратирующих веществ, таких как спирт, клетки теряют водную оболочку, в результате чего уменьшается их ионная сфера и электрический заряд. При этом уменьшается сила отталкивания клеток и создаются условия для объединения их в агломераты.

На способность дрожжей к флокуляции влияют внутренние и внешние факторы.


утренние — это генетическая природа дрожжей. Каждый штамм дрожжей характеризуется индивидуальной способностью к флокуляции. К внешним факторам относятся: состав сусла, температура брожения и рН среды, количество и качество семенных дрожжей. Преждевременной флокуляции способствует несбалансированный состав сусла: недостаток в нем аминного азота, сбраживаемых сахаров, ростовых веществ. Флокуляции способствуют низкая температура и увеличение нормы засева дрожжей, снижение рН до 4,3-4,0. На начальных этапах брожения следует избегать флокуляции, а в конце — способствовать этому процессу. Действенным технологическим фактором, управляющим флокуляцией, является температура.

Автолиз дрожжей

Автолиз — процесс саморастворения дрожжей под действием собственных ферментов. Начинается при отмирании клетки, когда прекращают действовать ферменты дыхания и брожения, но активизируются гидролитические ферменты. Происходит распад белковых веществ, углеводов, жиров, фосфорных соединений. Продукты распада выделяются в среду, изменяя вкус и свойства пива. При незначительном автолизе появляется дрожжевой привкус, при сильном — горький, мясной. Продукты автолиза снижают коллоидную стойкость пива и его пенистые свойства. Дрожжи могут отмирать и при вполне благоприятных условиях, но автолитические процессы усиливаются при недостатке в среде питательных веществ и повышенной температуре. Легко подвергаются автолизу осадочные дрожжи при несоблюдении условий их хранения. Стойкость к автолизу индивидуальна у отдельных штаммов дрожжей.

Штаммы (расы) дрожжей

В пивоварении применяют дрожжи верхового и низового брожения. Дрожжи верхового брожения отличаются мелкими размерами клеток и относятся к пылевидным дрожжам. На стадии интенсивного брожения выделяются на поверхности бродящей среды в виде пены и остаются в таком виде до конца брожения. Далее они медленно оседают, образуя на дне бродильного аппарата рыхлый слой. Дрожжи низового брожения относятся к хлопьевидным дрожжам. Во время главного брожения находятся в слое сусла, а в конце процесса быстро оседают на дно бродильного аппарата, образуя плотный осадок. Дрожжи низового брожения, по сравнению с дрожжами верхового брожения, более устойчивы к автолизу, дают хороший прирост биомассы, обладают более низкой бродильной активностью, образуют в пиве меньше диацетила и высших спиртов, что положительно сказывается на его качестве. Низовые дрожжи полностью сбраживают раффинозу, так как содержат необходимые ферменты для расщепления раффинозы сначала под действием β-фруктофуранозидазы на фруктозу и мелибиозу, а затем под действием мелибиазы на глюкозу и галактозу. Дрожжи верхового брожения сбраживают рафинозу лишь на 1/3, так как не имеют мелибиазы. В отечественном пивоварении применяют в основном дрожжи низового брожения.

Пивные дрожжи подразделяются на расы, отличающиеся друг от друга по размеру и форме клеток, скорости и степени сбраживания сусла, по способности к флокуляции и интенсивности редукции диацетила.

Бродильную активность дрожжей (V) определяют по степени сбраживания (в %) следующим образом:

 

V = [(E – e) · 100] / E, (6)

 

где Е — масса сухих веществ в начальном сусле, %;

е — экстракт пива, %.

 

По степени сбраживания дрожжи делятся на высокосбраживающие (степень сбраживания 90-100 %), среднесбраживающие (80-90 %), низкосбраживающие (менее 80 %).

В России используются следующие штаммы дрожжей: отечественные (776, 11, 44, 41, S-Львовская, 8а (М), Ф-2, 70, 129, 140, 145, 146, 148, Н, 919, М-И-Х1, М-И-ХП) и зарубежные (Р, F — чешские; 34, 308, 69, Rh — немецкие). Некоторые заводы применяют датские и финские штаммы дрожжей. Штаммы хранятся в коллекциях Всесоюзного научно-исследовательского института пивобезалкогольной и винодельческой промышленности (ВНИИПБ и ВП), МГУПП (Москва), в Санкт-Петербургской лаборатории микробиологии и технологии дрожжей, в Воронежской государственной технологической академии.

К сильносбраживающим относятся штаммы дрожжей 11, 8а (М), 129, 70, 145, Н, 148, F-чешская, 34, 308, Rh. Штаммы 776, 41, 44, S-Львовская, Р-чешская относятся к среднесбраживающим.

К наиболее востребованным отечественным расам относится раса 11. Это быстро- и глубокосбраживающая раса, не требовательна к качеству сырья, с хорошей способностью к флокуляции и редукции диацетила. При использовании данной расы получается пиво с полным чистым вкусом.

Дрожжи расы 776 относятся к среднесбраживающим и хорошо зарекомендовали себя при переработке несоложеного сырья. Обладают средней флокуляционной способностью. Данный штамм отличается высоким приростом биомассы дрожжей. Пиво имеет удовлетворительный вкус, резкую хмелевую горечь.

Дрожжи F-чешской расы быстро и глубоко сбраживают сусло, хорошо флокулируют и осветляют пиво, придают ему специфический приятный аромат, устойчивы к инфекции и автолизу.

Штаммы 8а (М) и Ф-2 позволяют значительно (на 2 суток) сократить продолжительность главного брожения. Могут применяться на тех заводах, где бродильное отделение является «узким» местом. Позволяют получать хорошо осветленное пиво с чистым вкусом. Дрожжи штамма Ф-2 способны сбраживать мальтотетраозу и низкомолекулярные декстрины.

Немецкие штаммы 34 и 308 быстро и глубоко сбраживают сусло, устойчивы к инфекции и высоким концентрациям спирта. Обеспечивают хорошее осветление пива после дображивания и придают ему чистый, мягкий вкус. Пиво характеризуется высокой, компактной, долго удерживающейся пеной. Однако данные расы прихотливы к качеству сырья. При использовании солода удовлетворительного качества могут наблюдаться остановка брожения или плохое оседание дрожжей.

Для сбраживания плотного сусла необходимы штаммы, устойчивые к осмотическому и этанольному стрессам. К таким дрожжам относятся штаммы 145 и Rh.

Расы дрожжей по отношению к количеству растворенного в сусле кислорода делятся на кислородозависимые и кислородонезависимые. Например, дрожжи расы 11 кислородонезависимые, а штамм 8а (М) требует дополнительной аэрации.

 

Разведение чистых культур дрожжей (ЧКД)

Под разведением ЧКД понимают увеличение массы дрожжей определенной маркировки до количества, необходимого для внесения в бродильный аппарат. Дрожжевые клетки определенного штамма получают из коллекций чистых культур в пробирках на косом сусло-огаре.

Процесс разведения ЧКД состоит из двух стадий: лабораторной и производственной.

Лабораторная стадия

В заводской лаборатории чистую культуру дрожжей из пробирки в боксе над пламенем горелки переносят петлей в колбу, содержащую 20 см3 стерильного охмеленного сусла с массовой долей сухих веществ 11-13 %. Первая стадия размножения дрожжей протекает при температуре 20-23 ºС и продолжается 24-36 часов. Затем проводят при последовательных пересевах дрожжевой разводки стадии высоких завитков на свежее стерильное сусло, увеличивая каждый раз объем среды в пять раз: 20 см3 → 100 см3 → 500 см3 → 2500 см3. Процесс брожения на каждой стадии проводят в холодильнике при температуре 8-10 ºС в течение 36-48 часов. Последняя лабораторная стадия протекает в медной колбе Карлсберга, где объем бродящей среды составляет 10 дм3 при температуре 7-8 ºС в течение 5-6 суток.

Производственная стадия

Осуществляется в специальном отделении завода — отделении чистой культуры, которое оборудовано установкой для разведения ЧКД. Используются установки разных систем: Ганзена, Линднера, Коблитца, Грейнера. Наиболее распространены установки Грейнера (рис. 17).

 

Строение клетки дрожжей

Строение клетки дрожжей

 

Рис. 17. Установка Грейнера:

1 — стерилизатор; 2 — бродильный цилиндр; 3 — сосуд для засевных дрожжей;

4 — резервуар предварительного брожения

 

Установка состоит из стерилизатора 1, бродильных цилиндров 2, число которых изменяется в зависимости от количества используемых рас дрожжей, сосудов для засевных дрожжей 3 и резервуара предварительного брожения 4.

Емкость отдельных элементов установки и количество установок зависят от мощности пивзавода. Для завода мощностью 4 млн. дал принимают две установки Грейнера со следующей вместимостью элементов: объем стерилизатора — 720 дм3, бродильного цилиндра — 360 дм3, резервуара предварительного брожения — 4000 дм3, сосуда для засевных дрожжей — 20 дм3.

Установка моется и стерилизуется 30 минут паром. В стерилизатор из сусловарочного котла или из гидроциклонного аппарата подается горячее охмеленное сусло и кипятится 1 час с периодической подачей стерильного сжатого воздуха для перемешивания. Далее сусло охлаждают до 8 ºС и передавливают в бродильный цилиндр, куда через специальный кран задают ЧКД из колбы Карлсберга. Брожение ведут трое суток при температуре 8 ºС. К концу брожения подают сусло в резервуар предварительного брожения, стерилизуют 1 час и охлаждают до 8 ºС. Часть дрожжей из бродильного цилиндра отбирают в сосуд для засевных дрожжей и используют в последующих циклах разведения вместо дрожжей лабораторной стадии. Основную массу дрожжей из бродильного цилиндра передают в резервуар предварительного брожения и ведут брожение трое суток при температуре 8 ºС.

Из отделения ЧКД содержимое резервуара предварительного брожения перекачивают в бродильное отделение в аппарат предварительного брожения вместимостью 1000 дал, куда наливают 300 дал заводского охмеленного сусла температурой 5-7 ºС. Через 12 часов брожения доливают чан до полного объема и через 6 часов содержимое перекачивают в аппарат главного брожения и ведут процесс обычным способом. Полученные после сбраживания дрожжи являются дрожжами первой генерации.

Источник: lektsia.com

Дрожжи представляют собой одноклеточные неподвижные организмы. Они могут быть различной формы: эллиптической, овальной, шаровидной и палочковидной (рис.1). Длина клеток колеблется от 5 до 12 мкм, ширина — от 3 до 8 мкм.
Форма и размеры дрожжевых клеток непостоянны и зависят от рода и вида, а также от условий культивирования, состава питательной среды и других факторов. Более стабильны молодые клетки, поэтому для характеристики дрожжей используют молодые культуры.

Дрожжевая клеткасостоит из клеточной оболочки, прилегающей к ней цитоплазматической мембраны, цитоплазмы или протоплазмы, внутри которой расположены органоиды и включения (запасные вещества) в виде капелек жира, зерен гликогена и волютина.
Клеточная оболочка — тонкая, плотная и эластичная. Она сохраняет форму клеток, регулирует обменные процессы, поддерживает внутриклеточное осмотическое давление. Через нее поступают в клетку вещества, необходимые для ее питания и роста, и выводятся наружу продукты обмена.
Цитоплазматическая мембрана служит осмотическим барьером клетки. Она состоит из нуклеиновых кислот, протеинов и полисахаридов.
Цитоплазма клетки выглядит однородной. В ней осуществляются жизненно важные процессы обмена веществ. Она обладает избирательной способностью к восприятию тех или иных веществ. Так, например, она не воспринимает сахарозу из раствора, тогда как глюкоза, фруктоза, органические кислоты и минеральные соли проходят свободно. В цитоплазме происходят сложные превращения поступивших веществ: часть их расходуется на образование самой цитоплазмы и оболочки клетки, часть служит источником энергии, необходимой для жизненных процессов.
Ядро – органоид клетки – находится в цитоплазме и является носителем наследственных свойств организма. Оно имеет вид округлого или овального пузырька диаметром около 2 мкм, окруженного очень тонкой оболочкой. Содержит прозрачную жидкость — нуклеоплазму и более плотную кариосому (ядрышко).
Ядро представляет собой конгломерат склеивающихся хромосом. Они неоднородны и состоят из зернистых и палочковидных структур. В зависимости от рода и вида дрожжей их может быть от 4 до 10-12. В ядрах обособлена в виде включений дезоксирибонуклеиновая кислота (ДНК). С ее помощью осуществляется передача наследственных признаков. При размножении ядро делится на 2 части, а при спорообразовании — на количество частей, соответствующее количеству образующихся спор.
Митохондрии (хондриосомы) (рис.3) также являются органоидом клетки. Это мелкие структуры, имеющие формы зернышек, палочек или нитей. Они имеют двухслойную оболочку. Длина митохондрий 0,4-1,0, ширина 0,2-0,5 мкм.
Рибосомы представляют собой органоиды, в которых происходит синтез белка за счет активированных аминокислот, поступающих из митохондрий. Синтез белков осуществляется при помощи рибонуклеиновой кислоты (РНК), связанной с белком.
Вакуоль, отделенная от цитоплазмы липопротеидной мембраной, является обязательным органоидом клетки. В вакуолях содержатся белки, жиры, углеводы, органические и минеральные вещества в коллоидном состоянии и ферментные системы. Круглые дрожжевые клетки содержат одну вакуоль, продолговатые — две. Форма их непостоянна.
Жировые включения содержатся в вакуолях в виде мелких капель, которые увеличиваются с ростом клетки.

Источник: studopedia.ru

Дрожжевые клетки являются достаточно сложными одноклеточными организмами. Почкующаяся дрожжевая клетка (рисунок 3) состоит из оболочки, протоплазмы и ядра.

Клеточная стенка – наружная часть оболочки – образована полисахаридами типа гемицеллюлоз, преимущественно маннаном и небольшим количеством хитина, внутренняя – белковыми веществами, фосфолипидами и липоидами. Оболочка регулирует состояние клеточного содержимого и имеет избирательную проницаемость, чем существенно отличается от обычных полупроницаемых мембран. Толщина клеточной стенки дрожжей до 400 нм.

Строение клетки дрожжей

 

1 – оболочка 2 – цитоплазма 7 — митохондрии

2 – ядро 5 — волютин

3 – гликоген 6 — вакуоль

Цитоплазматическая мембрана (плазмалемма) толщиной 7…8 нм рас-положена под клеточной стенкой и отделяет ее от цитоплазмы. Плазмалемма – основной барьер, определяющий осмотическое давление в клетке, обеспечивает избирательное движение питательных веществ из среды в клетку и вывод метаболитов из клетки. Плазмалемма состоит из бимолекулярного слоя липидов, в который включены белковые молекулы. Липиды ориентированы неполярными концами внутрь друг к другу, а полярными – наружу.  

Цитоплазма имеет гетерогенную структуру и вязкую консистенцию. Коллоидный характер ее обусловлен белковыми веществами. Кроме них в цитоплазме содержатся рибозонуклеопротеиды, липоиды, углеводы и значительное количество воды. Цитоплазма молодых клеток внешне гомогенна. При старении в ней появляются вакуоли, равномерная зернистость, жировые и липоидные гранулы. В цитоплазме с ее органоидами (хондриосомами, микросомами, вакуолями) и включениями протекают важнейшие ферментативные процессы.

Митохондрии(хондриосомы) имеют форму зернышек, палочек и нитей. Митохондриальные мембраны состоят из белков (80 %) и липидов (20 %). В состав митохондрий входят также полифосфаты, рибонуклеиновая (РНК) и дезоксирибонуклеиновая (РНК) кислоты. Митохондрии размножаются самостоятельно, реплицируя собственную митохондриальную ДНК и продуцируя собственные белки. В митохондриях полностью осуществляется цикл трикарбоновых кислот и важнейшая энергетическая реакция – окислительное фосфорилирование. Поэтому их рассматривают как основную «энергетическую станцию» клетки. Здесь происходят реакции активирования аминокислот в процессе синтеза белка, липидов и других соединений.

Эндоплазматический ретикулум расположен в цитоплазме дрожжевых клеток. Это система каналов, пузырьков и цистерн, связанная с цитоплазматической мембраной и ядерной стенкой – нуклеоммой. Эндоплазматический ретикулум обеспечивает транспорт различных веществ (белков, ионов, углеводов) по клетке. На эндоплазматической сети расположены рибосомы.

Рибосомы представляют собой включения в виде субмикроскопических зернышек, состоящих из липидов, белков и РНК, которые обеспечивают синтез белков за счет активированных аминокислот, поступающих из митохондриальной системы.

Ядро – небольшое шаровидное или овальное тело, окруженное цитоплазмой и не растворимое в ней. В ядре в виде включений обособленно расположены ДНК, ее протеиды, а также большое количество РНК. ДНК служит для передачи наследственной информации, сохранения свойств микроорганизмов. В ядре осуществляется транскрипция (синтез молекул информационных РНК путем считывания информации с ДНК с помощью фермента РНК-полимеразы), а также репликация ДНК при делении клетки.

Аппарат Гольджи – мембранное образование, морфологически связанное с эндоплазматической сетью и нуклеоммой. Роль аппарата заключается в выводе вредных веществ из клетки, обеспечении защитных функциий. В нем локализуются ферменты, катализирующие разрушение биополимеров. Мембраны аппарата Гольджи являются местом образования лизосом. Лизосомы представляют собой плотные гранулы, они защищают клетку от повреждений продуктами распада и чужеродными агентами.

Вакуоли – производные аппарата Гольджи – это обязательные органоиды клетки, представляют собой полости, наполненные клеточным соком и отделенные от цитоплазмы вакуолярной мембраной. Форма вакуолей изменяется вследствие движения цитоплазмы. Вакуоль в молодых клетках состоит из множества мелких полостей, в старых – из одной очень большой. Клеточный сок предствляет собой водный раствор различных солей, углеводов, жиров, белков, в том числе ферментов.

Волютин (метахроматин) скапливается в вакуолях в виде коллоидного раствора или гранул. Гранулы могут быть локализованы непосредственно в цитоплазме. В центре гранулы располагаются полифосфаты, связанные с РНК бивалентными ионами магния или кальция. Оболочка гранулы состоит из сложного комплекса РНК, белка и липидов. Таким образом, волютин – источник фосфора и аккумулятор энергии.

В молодых дрожжевых клетках жира обычно нет, в зрелых он содержится лишь в немногих клетках в виде мелких капель, а в старых – в виде крупных. Гликоген – запасное питательное вещество дрожжей, накапливающееся при культивировании дрожжей на средах, богатых сахаром. При недостатке гликоген быстро расходуется. В молодых клетках гликогена мало, в зрелых – до 40 %.

 

Источник: megalektsii.ru

Строение дрожжевой клетки

Дрожжи имеют достаточно сложную структур­ную организацию, типичную для эукариотных организмов. Они имеют сходное с мицелиальными грибами строение клетки, но имеются и не­которые различия (рис.23).

Клеточная стенка дрожжей, в отличие от грибов, на 60-70 % со­стоит из полисахаридов глюкана и маннана, связанных с белками и липидами, и лишь небольшое количество (1-3 %) составляет хитин, ко­торый вкраплен в стенку в виде гранул. У ряда дрожжей в определен­ных условиях могут образовываться слизистые капсулы различной толщины полисахаридной природы. Клетки таких дрожжей могут склеиваться друг с другом, образовывать хлопья и оседать на дно сосу­дов, в которых они развиваются.

Строение клетки дрожжей

Рис.23 Схема строения дрожжевой клетки:

1 — цитоплазматическая мембрана; 2 — клеточная стенка; 3 • ядрышко;

4 — ядро; 5 — жировые капли; 6 — митохондрии; 7 — вакуоль; 8 — гранулы

полифосфата; 9 — эндоплазматическая сеть; 10 — аппарат Гольджи;

11 — почковый рубец; 12 — рибосомы; 13 – цитоплазма

Клетки дрожжей, как и грибов, имеют хорошо развитый мембранный аппарат — ЦПМ, эндоплазматическую сеть, аппарат Гольджи, лизосомы, митохондрии. Имеются вакуоли и включения запасных питательных веществ: липиды (особенно их много у дрожжей-продуцентов липидов), гликоген, метахроматин. Клеточные структуры дрожжей выполняют те же функции, что и у грибов.

Размножение и классификация дрожжей

Дрожжи размножаются вегета­тивно и спорами, образующимися бесполым и половым путем. Способ размножения является важным признаком для классификации дрожжей. Наиболее распространенным способом вегетативного раз­множения является почкование. При почковании на поверхности мате­ринской клетки возникает маленький бугорок — почка, которая посте­пенно увеличивается почти до размеров материнской клетки и превра­щается в дочернюю клетку.

Она отделяется от материнской, оставляя на месте прикрепления рубец. На этом месте почка больше не образуется. Может образовы­ваться одна почка (полярное почкование), две почки на разных концах материнской клетки (биполярное почкование), в нескольких местах по­верхности материнской клетки (множественное почкование). Если при почковании вновь возникающие клетки не отделяются друг от друга, то образуется псевдомицелий. Псевдомицелий характерен для пленча­тых дрожжей. Размножение почкованием характерно для дрожжей овальной и округлой формы.

Размножение делением, характерное для дрожжей цилиндри­ческой формы, встречается реже. В результате этого процесса в клетке образуется поперечная перегородка — септа.

У дрожжей лимоновидной формы наблюдается так назы­ваемое почкующееся деление, при котором на широком основании формируется почка, процесс заканчивается появлением хорошо замет­ной септы в районе перешейка.

Любому вегетативному способу размножения предшествует митотическое деление ядра, при этом одно из вновь образовавшихся ядер вместе с цитоплазмой и частью клеточных структур переходят в дочер­нюю клетку и получают возможность самостоятельно существовать.

Бесполое и половое размножение связано с формированием спе­циализированных репродуктивных структур. При половом размноже­нии их появлению предшествует слияние клеток и последующее объ­единение ядер, при бесполом размножении предварительное слияние клеток и ядер не происходит.

Половое размножение большинства дрожжей связано с образо­ванием асков (сумок) и аскоспор. Образованию аскоспор предшествует копуляция (слияние содержимого двух клеток и их ядер). Образуется зигота, в которой затем формируются споры: ядро делится мейозом, вокруг новых ядер уплотняется цитоплазма, и они покрываются плот­ной оболочкой. Такие дрожжи относятся к классу аскомицетов. Ас­коспоры могут образовывать только молодые клетки на полноценной питательной среде и перенесенные в условия голодания, плохого снаб­жения кислородом и влагой. У различных видов дрожжей в аске об­разуется 2 — 4, а иногда 8 спор. При спорообразовании замедлен обмен веществ и жизнедеятельность клеток. Такое состояние обеспечи­вает их выживаемость в условиях, неблагоприятных для вегетативного размножения.

Аскоспоры устойчивы к действию высокой температу­ры, высушиванию, но они менее термостабильны, чем бактериальные споры, и погибают при температуре 60°С. При условиях, благоприят­ных для вегетативного развития, на свежей питательной среде споры прорастают и снова размножаются вегетативно. Аскоспоры у дрожжей могут быть овальными, круглыми, бобовидными, игловидными, шлемовидными и т.д. Как и споры грибов, споры дрожжей выполняют двойную функцию: служат для перенесения неблагоприятных условий, но главное, в отличие от эндоспор бактерий, они служат для размно­жения.

Поскольку дрожжи по существу являются одноклеточными немицелиальными грибами, они включены в классификацию грибов. В отдельную систематическую единицу они не выделены, а распределены по

Строение клетки дрожжей

Рис.24 Мицелиальные формы дрожжей:

1-псевдомицелий; 2- истинный мицелий;

а — артоспоры; б – эндоспоры.

трем классам грибов –Ascomycetes, Basidiomycetes и Deuteromycetes.

Для микробиологии пищевых производств имеют значение лишь аскомицетовые и несовершенные дрожжи. Между этими дрожжами имеется, принципиальное различие: у аскомицетовых дрожжей есть половой процесс, и они вызывают энергичное спиртовое брожение. Несовершенные дрожжи полового процесса не имеют и, как правило, вызывают слабое спиртовое брожение или вообще его не вызывают.

Аскомицетовые дрожжи включают примерно 2/3 дрожжей. Среди них наибольшее практическое значение имеют сахаромицеты, объединяющие более половины известных родов дрожжей. Особо важная роль принадлежит роду Saccharomyces, все виды которого вызывают энергичное спиртовое брожение. Дрожжи этого рода размножаются бесполым способом (почкование) и с помощью аскоспор.

В пищевых производствах наиболее широко используются два вида дрожжей этого рода: Saccharomyces cerevisiae (крупные овальные клетки) в производстве этилового спирта, пива, кваса и в хлебопечении и Saccharomyces ellpsoideus (крупные эллиптические клетки) — их используют преимущественно в виноделии. В каждом из указанных производств применяют свои, обладающие наиболее ценными производственными свойствами, специфические расы (разновидности) данных видов дрожжей.

К аскомицетовым дрожжам относятся и другие роды дрожжей. Это род Schizosaccharomyces, клетки которых имеют палочковидную форму и размножаются делением или с помощью аскоспор, образующихся в результате полового размножения. Дрожжи этого рода вызывают спиртовое брожение. Вид Schizosaccharomyces pombe используется в бродильной промышленности в странах с жарким климатом, например в Африке, где производят пиво сорта «Помбе». Дрожжи рода Saccharomycodes (сахаромикоды) имеют крупные клетки лимоновидной формы. Они размножаются почкующимся делением на обоих концах клетки (биполярно) и с помощью аскоспор, которые располагаются парами и образуются половым путем. Эти дрожжи вызывают спиртовое брожение, однако они являются вредителями в виноделии, так как образуют продукты, придающие винам неприятный прокисший запах.

Некоторые аскомицетовые дрожжи используются в микробиологической промышленности для получения липидов и витаминов.

Дрожжи класса Deuteromycetes(несовершенные дрожжи). Они не образуют спор, поэтому эти дрожжи часто называют аспорогенными. Размножаются они почкованием. Несовершенные дрожжи вызывают либо слабое брожение, либо не вызывают его вообще, поэтому их часто называют несахаромицетами.

Многие из них являются причиной порчи пищевых продуктов и являются вредителями ряда пищевых производств. Однако некоторые из несовершенных дрожжей нашли полезное практическое применение. Среди несовершенных дрожжей наибольшее значение имеют роды Candida, Torulopsis и Rhodotorula.

Дрожжи рода Candida имеют удлиненную форму клеток, сочетания которых образуют примитивный псевдомицелий. Многие из них не вызывают спиртовое брожение и являются вредителями в бродильных производствах (например, Candida mycoderma), так как, будучи аэробами, окисляют спирт до диоксида углерода и воды. Другие представители рода Candida являются вредителями в дрожжевом производстве, снижают качество хлебопекарных дрожжей, так как относятся к слабосбраживающим видам. Некоторые из них вызывают порчу квашенных овощей, безалкогольных и ряда других напитков и продуктов. Среди этих дрожжей имеются патогенные виды, вызывающие кандидозы, поражающие слизистые оболочки ротовой полости, носоглотки и других органов человека. Различные виды дрожжей рода Candida используются для получения кормового белка и белково-витаминных концентратов (БВК).

Дрожжи рода Torulopsis имеют мелкие круглые или овальные клетки. Многие виды способны вызывать слабое спиртовое брожение и используются в производстве кефира и кумыса. Некоторые применяются для промышленного получения кормового белка.

Дрожжи рода Rhodotorula имеют круглые, овальные или удлиненные клетки, последние образуют псевдомицелий. Колонии таких дрожжей красные и желтые благодаря наличию пигментов — каротиноидов, являющихся провитамином А. Эти дрожжи используются для промышленного получения кормовых белково-витаминных концентратов, которые служат источником жирорастворимого витамина А для животных. Другие представители этого рода накапливают в клетках много липидов и используются в микробиологической промышленности как продуценты липидов.

Вирусы

В природе имеются формы более мелкие, чем бактерии, не имеющие клеточного строения. К ним относятся вирусы и фаги, поражающие клетки животных, растений и микроорганизмов. Особенность их паразитизма заключается в том, что они действуют на генетическом уровне. Не обладая свойственной любой клетке способностью к синтезу ДНК, они внедряют в клетку свой генетический материал, в результате чего клетка начинает синтезировать вирусные частицы.

Вне клетки вирусы существуют в виде вирионов — вирусных частиц, находящихся в покоящемся состоянии. Вирионы обнаруживаются в воздухе, почве, природной сточной воде. Размер, форма и химический состав вирионов очень разнообразны. В вирусной частице различают две основные структуры: белковую оболочку — капсид и генетический материал вируса, представленный молекулой ДНК или РНК.

Вирусы, «поражающие микроорганизмы, называются фагами (буквально «фаг» — пожиратель). Бактериофаги паразитируют в клетках бактерий.

Размеры фагов колеблются от 40 до 140 нм. Бактериофаги имеют вид многогранной головки со стержнем (рис.25), покрытый снаружи белковой оболочкой. Внутри стержня имеется канал. Головка фага заполнена молекулой ДНК. У основания стержня имеется базальная пластинка с шипами и нитями.

Воздействие фага на бактериальную клетку происходит в несколько стадии: фаговая частица с помощью базальной пластинки с зубцами и нитями адсорбируется на поверхности бактериальной клетки; затем фаг действует как шприц, когда в результате сокращения головки стержень проходит через клеточную стенку и цитоплазматическую мембрану бактерии и впрыскивает свою ДНК внутрь клетки. Фаговая ДНК перестраивает механизм обмена бактерии, в результате в ней начинают синтезироваться частицы фага. Через определенное вре­мя все содержимое клетки превращается в зрелые фаговые частицы, клеточная стенка бактерии растворяется, и фаги выходят наружу.

Бактериофаги наносят большой вред в молочной промышлен­ности (производстве сыров, творога, сметаны) и в производстве марга­рина. Они поражают в основном молочнокислые стрептококки заква­сок для получения этих продуктов. Под влиянием бактериофага клетки стрептококков лизируют (растворяются) и погибают. В антибиоти­ческой промышленности актинофаги лизируют производственную культуру актиномицетов – продуцентов антибиотиков.

Строение клетки дрожжей

Рис.25 Схема строения фага:

1 – головка, содержащая нуклеиновую кислоту (ДНК или РНК);

2 – полый стержень; 3 – отросток; 4 – базальная пластина;

5 — шипы и нити отростка

В медицине бактериофаги применяются для лечения некоторых заболеваний, например дизентерии.

Источник: StudFiles.net

Строение клетки дрожжей

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector