Бактерії — дуже давні організми, що з’явилися близько трьох мільярдів років тому. Бактерії мікроскопічно малі, але їх скупчення або колонії видно неозброєним оком. У природі бактерії зустрічаються всюди, і виконую на планеті гігантську роботу.

Бактерії є руйнівниками органічної речовини, очищаючи планету від залишків загиблих тварин і рослин. Зустрічаються бактерії-симбіонти, які живуть в організмах рослин і тварин, приносячи їм користь (бульбочкові бактерії). Відомі й хижі бактерії, що поїдають інших бактерій.

Мета роботи: використовуючи методику отримання культури гнильних бактерій і культури сінної палички, виростити і поспостерігати зазначені мікроорганізми.

скласти уявлення про гнитті;

вивчити методику вирощування культури гнильних бактерій і сінної палички;

виконати і описати лабораторні роботи, спостереження культур.

Метод роботи: теоретичний і експериментальний

навчимося ставити мікробіологічні досвід, працювати з електронним мікроскопом, писати невеликі дослідні роботи.


Гниття — розпад білкових і інших азотистих речовин під впливом гнильних бактерій супроводжується утворенням смердючих продуктів. Розвитку процесів гниття сприяють: вологості. належна t °. Білки під впливом гниття піддаються глибоким і складним змінам, в результаті яких білкова молекула розпадається на довгий ряд дрібних молекул. Початок вивченню процесів гниття білків було покладено Ненцкого, Бауманом, братами Зальковскімі, Готьє, Етара і Брігер. Гнильне розщеплення викликається розкладанням білкових речовин мікроорганізмами. Білки є найважливішою складовою частиною живого і відмерлого органічного світу, містяться в багатьох харчових продуктах.

Здатність руйнувати білкові речовини притаманна багатьом мікроорганізмам. Одні мікроорганізми викликають неглибоке розщеплення білка, інші можуть руйнувати його більш глибоко. Гнильні процеси постійно протікають в природних умовах і нерідко виникають в продуктах і виробах, що містять білкові речовини. Кінцевими продуктами гниття є амінокислоти і газоподібні смердючі продукти (аміак. Сірководень, індол, скатол, меркаптани і ін.).

Частіше за інших гниття викликають такі аеробні бактерії (живуть в кисневому середовищі): баціллус субтіліс (сінна паличка) і баціллус мезентерікус (картопляна паличка). Обидві ці бактерії рухливі і утворюють спори, що відрізняються стійкістю до високих температур.

Сінна паличка постійно живе на сіні, завдяки чому і отримала свою назву. Розвивається на Сінному настої у вигляді плівки. Сінна паличка здатна виробляти антибіотичні речовини, що пригнічують життєдіяльність багатьох хвороботворних і неболезнетворних бактерій. При розкладанні нею білків виділяється багато аміаку.


Картопляна паличка має більшу активність в руйнуванні білків, ніж сінна. Картопляна паличка (сінна паличка в меншій мірі) здатна викликати картопляну хворобу печеного хліба, внаслідок чого він стає тягучим і липким. Такий хліб на поживу непридатний. Обидві бактерії можуть викликати псування багатьох інших продуктів — молочних і кондитерських виробів, картоплі, плодів та ін.

Оптимальна температура розвитку для більшої частини гнильних мікроорганізмів знаходиться в межах 25-35 ° С. Низькі температури не викликають їх загибель, а лише призупиняють розвиток. При температурі 4-6 ° С життєдіяльність гнильних мікроорганізмів пригнічується.

II. ВИРОЩУВАННЯ КУЛЬТУРИ гнильних бактерій І Сінний ПАЛОЧКИ

1. Лабораторні роботи «Вирощування культури мікроорганізмів»

А) Методика приготування елективної накопичувальної культури гнильних бактерій

1) У простерилізованих баночку покласти шматочок будь-якого м’яса, шматочок вареної ковбаси

2) Щільно закрити кришкою, пробкою.

3) Поставити в тепле місце

4) Після закінчення досвіду микроскопировать культуру.

Відповідно до опису роботи були виконані всі дії, протягом тижня проводилися спостереження за ростом колоній сінної палички і гнильних бактерій.


Таблиця 1. Спостереження Мхітарян Арпіне

Таким чином, процеси гниття в усіх дослідах протікають однаково, супроводжуються виділенням смердючих речовин, утворенням нальоту і рідини

Б) Методика приготування елективної накопичувальної культури сінної палички (Bacillus subtilis)

Накопичувальними елективних культурами називаються такі, в яких створюються умови для зростання мікроорганізмів одного виду і пригнічується ріст інших видів. У даній роботі кип’ятіння є фактором, що вбиває неспороносні форми, внаслідок чого сінна паличка утворює справжню колонію

Устаткування і матеріали: колба термостійкий на 250 мл, скляна паличка, ватно-марлева пробка, сінна труха або солома, товчений крейда, електроплитка або водяна баня, окріп, Склограф, ножиці.

Отримання культури сінної палички

1) Простерилізувати посуд.

2) відважив навішення 10-15 г сіна або соломи.

3) Помістити в колбу. Залити окропом, так, щоб солома була повністю покрита водою.

4) Засипати 0,5 ч. Л. крейди. Кип’ятити 15 хв.

5) Закрити корком і поставити в шафу.

6) Після закінчення микроскопировать.

На поверхні сінного відвару через 5 днів з’явилася сіра плівка, що складається з особин сінної палички.

2. Спостереження мікроорганізмів

1. Предметні скла, покривні скла, піпетка, серветка, склянка.

2. Вичистили покривні скла.

3. З колби, де знаходилися культури, злили розчин з мікроорганізмами в стакан.


4. Крапельку з культурою наносили на предметне скло, фарбували лакмусом, метиловим оранжевим накривали покривним склом.

5. Розглянули пофарбовані лакмусом, метиловим оранжевим мікропрепарати під мікроскопом. Зробили мікрофотографії на альті шкільний USB-мікроскоп

Источник: jak.bono.odessa.ua

Гниття

Мікроорганізми відіграють велику роль у руйнуванні білків, що у величезному масштабі відбуваються у природі, як складова частина кругообігу речовин.

Гниття – це процес глибокого руйнування білкових речовин мікроорганізмами.

Здатність руйнувати білкові речовини властива багатьом мікроорганізмам у тій чи іншій мірі. Деякі руйнують безпосередньо білки, інші впливають лише на більш прості сполуки – пептиди, амінокислоти та ін.

Розщеплення білків мікроорганізмами пов’язано з використанням їх для синтезу речовин свого організму, а також як енергетичний матеріал, при цьому білки зазнають більш глибокого розщеплення.

Гниття – складний, багатостадійний біохімічний процес, наслідки якого залежать від будови, складу самих білків, а також умов, за якими здійснюється процес, і видів мікроорганізмів, які його викликають.

Білкові речовини не здатні безпосередньо потрапляти у клітини мікроорганізмів, тому використовують білки лише ті, які мають протеолітичні ферменти екзопротеази, що вивільняються клітинами у оточуюче середовище.

Гниття легко здійснюється як за наявністю кисню, так і за умовами йго відсутності.


Руйнування білків здійснюється за схемою:

Білок+Н2О→пептони+Н2О→поліпептиди+Н2О→амінокислоти

Процес руйнування білків починається з їх гідролізу. Первинними продуктами гідролізу є пептони та поліпептиди. Вони розщеплюються до амінокислот, які і є кінцевими продуктами гідролізу.

Подальше перетворення здійснюється за двома різним напрямками:

Дезамінування зводиться до відщеплювання аміногрупи –NH2 від амінокислоти у вигляді аміаку NH3. Розрізняють окислювальне, гідролітичне і відновне дезамінування. У кожному випадку утворюються різні речовини. Під час окислювального дезамінування утворюються кетокислоти і аміак:

СН3СНNH2СООН (аланін)+1/2О2→СН3СОСООН (піровиноградка кислота)+NН3+СНСОСООН

Під час гідролітичного дезамінування утворюються оксикислоти і аміак:

СН3СНNH2СООН (аланін)+Н2О→ОНСН3СНСООН (молочна кислота)+NН3

Під час відновлювального дезамінування утворюються карбонові кислоти і аміак:

СН3СНNH2СООН (аланін)+Н2→СН3СН2СООН (пропіонова кислота)+ NН3

Можливі і інші шляхи дезамінування, що призводять до утворення інших продуктів, наприклад, ненасичених з’єднань.


Декарбоксилування зводиться до відщеплювання від амінокислот карбоксильної групи у вигляді вуглекислого газу. Декарбоксилування активніше здійснюється кислому середовищі. Під час декарбоксилування окрім вуглекислого газу, утворюються аміни – кадаверин, путресцин, агматін (трупні отрути). Наприклад:

NH2СН2СН2(лізин)+Н2→NН2СНСООН→NН2(СН2)5СО22 (кадавердин)



Декарбоксилування і дезамінування здійснюються часто сумісно, через що утворюються різноманітні з’єднання: мурашина, оцтова, пропіонова, масляна та інші кислоти, бутиловий, аліловий та інші спирти. Під час руйнування ароматичних амінокислот утворюються продукти гниття: фенол, скатол, індол – речовини, що мають дуже неприємний запах. Під час руйнування амінокислот, що містять сірку, утворюється сірководень або його похідні – меркаптани.

Подальше перетворення азотистих і без азотистих органічних з’єднань, що утворюються під час руйнування різних амінокислот, залежить від оточуючих умов існування і складу мікроорганізмів. Аеробні мікроорганізми піддають ці з’єднання окисленню до кінцевих мінеральних речовин – аміаку, вуглекислого газу, води, водню, сірководню, фосфатів. За анаеробними умовами повна мінералізація не здійснюється, через що утворюються проміжні органічні сполуки. Деякі з них мають отруйні властивості й неприємний запах.


До збудників гниття належать багато мікроорганізмів, особливо з групи бактерій. Більшість із них чутливі до кислого середовища й підвищеного вмісту хлориду натрію. Серед них зустрічаються аероби і анаероби, здатні утворювати спори, психрофіти(холод) і термофіли, рухомі і нерухомі. Це сінна, картопляна палички, перфрінгенс, протей та ін.

З аеробних міркоорганізмів частіше в процесах гниття беруть участь наступні:

Мікоідес – рухома гвинтова бацила, здатна утворювати спори овальної форми різної величини, руйнує білки без утворення сірководню.

Сінна паличка – коротка рухома спорова паличка з закругленими кінцями, широко розповсюджена у природі, енергійно руйнує білок. Сінна і картопляна палички окрім продуктів, що містять білок, псують їжу, що містить вуглеводи (кондитерські вироби, цукрові сиропи тощо), вражають хліб (переважно пшеничний), картоплю.

Бацила мегатерія – рухома спорова паличка, здатна утворювати довгі ланцюжки, на відміну від бацили мікоідеус продукує багато сірководню, здатна утворювати слиз на поверхні субстрату.

Бактерія флуоресценс – невелика рухома паличка, здатна продукувати пігмент флуоресцеїну, що надає зеленуватого кольору субстратам.

Бактерія продігіозум (паличка чудесної крові) – дрібна рухома паличка, що утворює ровоподібні колонії або суцільний наліт червоного кольору на різних продуктах.

За здатністю руйнувати білки до цієї групи відносять кишкову паличку і паличку протею, що є умовними анаеробами.


Серед анаеробних бактерій активними збудниками гниття є путрифікус, спорогенез і ін.

Путрифікус – рухома спорова паличка, руйнує білки з утворенням газоподібних речовин, зустрічається в грунті, гною, на харчових продуктах, консервах тощо.

Спорогенез – рухома спорова паличка, активно руйнує білок з утворенням сірководню.

Окрім бактерій до руйнування білків здатні плісняві гриби і актиноміцети. Усі вони приймають участь у кругообігу речовин у природі, але якщо потрапляють на харчові продукти, активно псують їх. Вони здатні завдавати величезні економічні збитки, деякі з них завдають ризику щодо здоров’я людини, бо продукують отруйні речовини.

Література:

1. Пирог Т.П. Загальна мікробіологія. К.: НУХТ. – 2004.

2. Векірчик К.М. Мікробіологія з основами вірусології. К.: «Либідь». – 2011.

3. Шлегель Г. Общая микробиология. М.: «Мир». – 1987.

4. Мишустин Е.Н., Емцев В.Т. Микробиология. М.:Агропромиздат. – 1987.

5. Малигіна В.Д., Ракша-Слюсарева О.А. та ін.. Мікробіологія та фізіологія харчування. К.: Кондор. – 2009.

 

Лекція №7

Тема: Мікробіологія харчових продуктів

План:

3. Мікрофлора основних харчових продуктів: м’яса та м’ясних продуктів, риби, молока та молочних продуктів, яєць та продуктів їх переробки, зернових продуктів, плодів та овочів, стерилізованих банкових консервів.

4. Заходи запобігання мікробіологічного псування харчових продуктів

 

Источник: studopedia.su

Ископаемые свидетельства.


Вероятно, бактерии – древнейшая известная группа организмов. Слоистые каменные структуры – строматолиты, – датируемые в ряде случаев началом археозоя (архея), т.е. возникшие 3,5 млрд. лет назад, – результат жизнедеятельности бактерий, обычно фотосинтезирующих, т.н. сине-зеленых водорослей. Подобные структуры (пропитанные карбонатами бактериальные пленки) образуются и сейчас, главным образом у побережья Австралии, Багамских островов, в Калифорнийском и Персидском заливах, однако они относительно редки и не достигают крупных размеров, потому что ими питаются растительноядные организмы, например брюхоногие моллюски. В наши дни строматолиты растут в основном там, где эти животные отсутствуют из-за высокой солености воды или по другим причинам, однако до появления в ходе эволюции растительноядных форм они могли достигать огромных размеров, составляя существенный элемент океанического мелководья, сравнимый с современными коралловыми рифами. В некоторых древних горных породах обнаружены крохотные обугленные сферы, которые также считаются остатками бактерий. Первые ядерные, т.е. эукариотические, клетки произошли от бактерий примерно 1,4 млрд. лет назад.

Экология.

Бактерий много в почве, на дне озер и океанов – повсюду, где накапливается органическое вещество.


и живут в холоде, когда столбик термометра чуть превышает нулевую отметку, и в горячих кислотных источниках с температурой выше 90° С. Некоторые бактерии переносят очень высокую соленость среды; в частности, это единственные организмы, обнаруженные в Мертвом море. В атмосфере они присутствуют в каплях воды, и их обилие там обычно коррелирует с запыленностью воздуха. Так, в городах дождевая вода содержит гораздо больше бактерий, чем в сельской местности. В холодном воздухе высокогорий и полярных областей их мало, тем не менее они встречаются даже в нижнем слое стратосферы на высоте 8 км.

Густо заселен бактериями (обычно безвредными) пищеварительный тракт животных. Эксперименты показали, что для жизнедеятельности большинства видов они не обязательны, хотя и могут синтезировать некоторые витамины. Однако у жвачных (коров, антилоп, овец) и многих термитов они участвуют в переваривании растительной пищи. Кроме того, иммунная система животного, выращенного в стерильных условиях, не развивается нормально из-за отсутствия стимуляции бактериями. Нормальная бактериальная «флора» кишечника важна также для подавления попадающих туда вредных микроорганизмов.

СТРОЕНИЕ И ЖИЗНЕДЕЯТЕЛЬНОСТЬ БАКТЕРИЙ

Бактерии гораздо мельче клеток многоклеточных растений и животных. Толщина их обычно составляет 0,5–2,0 мкм, а длина – 1,0–8,0 мкм. Разглядеть некоторые формы едва позволяет разрешающая способность стандартных световых микроскопов (примерно 0,3 мкм), но известны и виды длиной более 10 мкм и шириной, также выходящей за указанные рамки, а ряд очень тонких бактерий может превышать в длину 50 мкм. На поверхности, соответствующей поставленной карандашом точке, уместится четверть миллиона средних по величине представителей этого царства.

Строение.

По особенностям морфологии выделяют следующие группы бактерий: кокки (более или менее сферические), бациллы (палочки или цилиндры с закругленными концами), спириллы (жесткие спирали) и спирохеты (тонкие и гибкие волосовидные формы). Некоторые авторы склонны объединять две последние группы в одну – спириллы.

Прокариоты отличаются от эукариот главным образом отсутствием оформленного ядра и наличием в типичном случае всего одной хромосомы – очень длинной кольцевой молекулы ДНК, прикрепленной в одной точке к клеточной мембране. У прокариот нет и окруженных мембранами внутриклеточных органелл, называемых митохондриями и хлоропластами. У эукариот митохондрии вырабатывают энергию в процессе дыхания, а в хлоропластах идет фотосинтез (см. также КЛЕТКА). У прокариот вся клетка целиком (и в первую очередь – клеточная мембрана) берет на себя функцию митохондрии, а у фотосинтезирующих форм – заодно и хлоропласта. Как и у эукариот, внутри бактерии находятся мелкие нуклеопротеиновые структуры – рибосомы, необходимые для синтеза белка, но они не связаны с какими-либо мембранами. За очень немногими исключениями, бактерии не способны синтезировать стеролы – важные компоненты мембран эукариотической клетки.

Снаружи от клеточной мембраны большинство бактерий одето клеточной стенкой, несколько напоминающей целлюлозную стенку растительных клеток, но состоящей из других полимеров (в их состав входят не только углеводы, но и аминокислоты и специфические для бактерий вещества). Эта оболочка не дает бактериальной клетке лопнуть, когда в нее за счет осмоса поступает вода. Поверх клеточной стенки часто находится защитная слизистая капсула. Многие бактерии снабжены жгутиками, с помощью которых они активно плавают. Жгутики бактерий устроены проще и несколько иначе, чем аналогичные структуры эукариот.

«ТИПИЧНАЯ» БАКТЕРИАЛЬНАЯ КЛЕТКА и ее основные структуры.

Сенсорные функции и поведение.

Многие бактерии обладают химическими рецепторами, которые регистрируют изменения кислотности среды и концентрацию различных веществ, например сахаров, аминокислот, кислорода и диоксида углерода. Для каждого вещества существует свой тип таких «вкусовых» рецепторов, и утрата какого-то из них в результате мутации приводит к частичной «вкусовой слепоте». Многие подвижные бактерии реагируют также на колебания температуры, а фотосинтезирующие виды – на изменения освещенности. Некоторые бактерии воспринимают направление силовых линий магнитного поля, в том числе магнитного поля Земли, с помощью присутствующих в их клетках частичек магнетита (магнитного железняка – Fe3O4). В воде бактерии используют эту свою способность для того, чтобы плыть вдоль силовых линий в поисках благоприятной среды.

Условные рефлексы у бактерий неизвестны, но определенного рода примитивная память у них есть. Плавая, они сравнивают воспринимаемую интенсивность стимула с ее прежним значением, т.е. определяют, стала она больше или меньше, и, исходя из этого, сохраняют направление движения или изменяют его.

Размножение и генетика.

Бактерии размножаются бесполым путем: ДНК в их клетке реплицируется (удваивается), клетка делится надвое, и каждая дочерняя клетка получает по одной копии родительской ДНК. Бактериальная ДНК может передаваться и между неделящимися клетками. При этом их слияния (как у эукариот) не происходит, число особей не увеличивается, и обычно в другую клетку переносится лишь небольшая часть генома (полного набора генов), в отличие от «настоящего» полового процесса, при котором потомок получает по полному комплекту генов от каждого родителя.

Такой перенос ДНК может осуществляться тремя путями. При трансформации бактерия поглощает из окружающей среды «голую» ДНК, попавшую туда при разрушении других бактерий или сознательно «подсунутую» экспериментатором. Процесс называется трансформацией, поскольку на ранних стадиях его изучения основное внимание уделялось превращению (трансформации) таким путем безвредных организмов в вирулентные. Фрагменты ДНК могут также переноситься от бактерии к бактерии особыми вирусами – бактериофагами. Это называется трансдукцией. Известен также процесс, напоминающий оплодотворение и называемый конъюгацией: бактерии соединяются друг с другом временными трубчатыми выростами (копуляционными фимбриями), через которые ДНК переходит из «мужской» клетки в «женскую».

Иногда в бактерии присутствуют очень мелкие добавочные хромосомы – плазмиды, которые также могут переноситься от особи к особи. Если при этом плазмиды содержат гены, обусловливающие резистентность к антибиотикам, говорят об инфекционной резистентности. Она важна с медицинской точки зрения, поскольку может распространяться между различными видами и даже родами бактерий, в результате чего вся бактериальная флора, скажем кишечника, становится устойчивой к действию определенных лекарственных препаратов. См. также НУКЛЕИНОВЫЕ КИСЛОТЫ.

МЕТАБОЛИЗМ

Отчасти в силу мелких размеров бактерий интенсивность их метаболизма гораздо выше, чем у эукариот. При самых благоприятных условиях некоторые бактерии могут удваивать свою общую массу и численность примерно каждые 20 мин. Это объясняется тем, что ряд их важнейших ферментных систем функционирует с очень высокой скоростью. Так, кролику для синтеза белковой молекулы требуются считанные минуты, а бактерии – секунды. Однако в естественной среде, например в почве, большинство бактерий находится «на голодном пайке», поэтому если их клетки и делятся, то не каждые 20 мин, а раз в несколько дней.

Питание.

Бактерии бывают автотрофами и гетеротрофами. Автотрофы («сами себя питающие») не нуждаются в веществах, произведенных другими организмами. В качестве главного или единственного источника углерода они используют его диоксид (CO2). Включая CO2 и другие неорганические вещества, в частности аммиак (NH3), нитраты (NO3) и различные соединения серы, в сложные химические реакции, они синтезируют все необходимые им биохимические продукты.

Гетеротрофы («питающиеся другим») используют в качестве основного источника углерода (некоторым видам нужен и CO2) органические (углеродсодержащие) вещества, синтезированные другими организмами, в частности сахара. Окисляясь, эти соединения поставляют энергию и молекулы, необходимые для роста и жизнедеятельности клеток. В этом смысле гетеротрофные бактерии, к которым относится подавляющее большинство прокариот, сходны с человеком. См. также УГЛЕРОД.

Главные источники энергии.

Если для образования (синтеза) клеточных компонентов используется в основном световая энергия (фотоны), то процесс называется фотосинтезом, а способные к нему виды – фототрофами. Фототрофные бактерии делятся на фотогетеротрофов и фотоавтотрофов в зависимости от того, какие соединения – органические или неорганические – служат для них главным источником углерода.

Фотоавтотрофные цианобактерии (сине-зеленые водоросли), как и зеленые растения, за счет световой энергии расщепляют молекулы воды (H2O). При этом выделяется свободный кислород (1/2O2) и образуется водород (2H+), который, можно сказать, превращает диоксид углерода (CO2) в углеводы. У зеленых и пурпурных серных бактерий световая энергия используется для расщепления не воды, а других неорганических молекул, например сероводорода (H2S). В результате также образуется водород, восстанавливающий диоксид углерода, но кислород не выделяется. Такой фотосинтез называется аноксигенным.

Фотогетеротрофные бактерии, например пурпурные несерные, используют световую энергию для получения водорода из органических веществ, в частности изопропанола, но его источником у них может служить и газообразный H2.

Если основной источник энергии в клетке – окисление химических веществ, бактерии называются хемогетеротрофами или хемоавтотрофами в зависимости от того, какие молекулы служат главным источником углерода – органические или неорганические. У первых органика дает как энергию, так и углерод. Хемоавтотрофы получают энергию при окислении неорганических веществ, например водорода (до воды: 2H4 + O2® 2H2O), железа (Fe2+® Fe3+) или серы (2S + 3O2 + 2H2O ® 2SO42– + 4H+), а углерод – из СO2. Эти организмы называют также хемолитотрофами, подчеркивая тем самым, что они «питаются» горными породами.

Дыхание.

Клеточное дыхание – процесс высвобождения химической энергии, запасенной в «пищевых» молекулах, для ее дальнейшего использования в жизненно необходимых реакциях. Дыхание может быть аэробным и анаэробным. В первом случае для него необходим кислород. Он нужен для работы т.н. электронотранспортной системы: электроны переходят от одной молекулы к другой (при этом выделяется энергия) и в конечном итоге присоединяются к кислороду вместе с ионами водорода – образуется вода.

Анаэробным организмам кислород не нужен, а для некоторых видов этой группы он даже ядовит. Высвобождающиеся в ходе дыхания электроны присоединяются к другим неорганическим акцепторам, например нитрату, сульфату или карбонату, или (при одной из форм такого дыхания – брожении) к определенной органической молекуле, в частности к глюкозе. См. также МЕТАБОЛИЗМ.

КЛАССИФИКАЦИЯ

У большинства организмов видом принято считать репродуктивно изолированную группу особей. В широком смысле это означает, что представители данного вида могут давать плодовитое потомство, спариваясь только с себе подобными, но не с особями других видов. Таким образом, гены конкретного вида, как правило, не выходят за его пределы. Однако у бактерий может происходить обмен генами между особями не только разных видов, но и разных родов, поэтому правомерно ли применять здесь привычные концепции эволюционного происхождения и родства, не вполне ясно. В связи с этой и другими трудностями общепринятой классификации бактерий пока не существует. Ниже приведен один из широко используемых ее вариантов.

ЦАРСТВО MONERA

Тип I. Gracilicutes (тонкостенные грамотрицательные бактерии)

Класс 1. Scotobacteria (нефотосинтезирующие формы, например миксобактерии)

Класс 2. Anoxyphotobacteria (не выделяющие кислорода фотосинтезирующие формы, например пурпурные серные бактерии)

Класс 3. Oxyphotobacteria (выделяющие кислород фотосинтезирующие формы, например цианобактерии)

Тип II. Firmicutes (толстостенные грамположительные бактерии)

Класс 1. Firmibacteria (формы с жесткой клеткой, например клостридии)

Класс 2. Thallobacteria (разветвленные формы, например актиномицеты)

Тип III. Tenericutes (грамотрицательные бактерии без клеточной стенки)

Класс 1. Mollicutes (формы с мягкой клеткой, например микоплазмы)

Тип IV. Mendosicutes (бактерии с неполноценной клеточной стенкой)

Класс 1. Archaebacteria (древние формы, например метанобразующие)

Домены.

Недавние биохимические исследования показали, что все прокариоты четко разделяются на две категории: маленькую группу архебактерий (Archaebacteria – «древние бактерии») и всех остальных, называемых эубактериями (Eubacteria – «истинные бактерии»). Считается, что архебактерии по сравнению с эубактериями примитивнее и ближе к общему предку прокариот и эукариот. От прочих бактерий они отличаются несколькими существенными признаками, включая состав молекул рибосомной РНК (pРНК), участвующей в синтезе белка, химическую структуру липидов (жироподобных веществ) и присутствие в клеточной стенке вместо белково-углеводного полимера муреина некоторых других веществ.

В приведенной выше системе классификации архебактерии считаются лишь одним из типов того же царства, которое объединяет и всех эубактерий. Однако, по мнению некоторых биологов, различия между архебактериями и эубактериями настолько глубоки, что правильнее рассматривать архебактерии в составе Monera как особое подцарство. В последнее время появилось еще более радикальное предложение. Молекулярный анализ выявил между двумя этими группами прокариот столь существенные различия в структуре генов, что присутствие их в рамках одного царства организмов некоторые считают нелогичным. В связи с этим предложено создать таксономическую категорию (таксон) еще более высокого ранга, назвав ее доменом, и разделить все живое на три домена – Eucarya (эукариоты), Archaea (архебактерии) и Bacteria (нынешние эубактерии).

ЭКОЛОГИЯ

Две важнейшие экологические функции бактерий – фиксация азота и минерализация органических остатков.

Азотфиксация.

Связывание молекулярного азота (N2) с образованием аммиака (NH3) называется азотфиксацией, а окисление последнего до нитрита (NO2) и нитрата (NO3) – нитрификацией. Это жизненно важные для биосферы процессы, поскольку растениям необходим азот, но усваивать они могут лишь его связанные формы. В настоящее время примерно 90% (ок. 90 млн. т) годового количества такого «фиксированного» азота дают бактерии. Остальное количество производится химическими комбинатами или возникает при разрядах молний. Азот воздуха, составляющий ок. 80% атмосферы, связывается в основном грамотрицательным родом ризобиум (Rhizobium) и цианобактериями. Виды ризобиума вступают в симбиоз примерно с 14 000 видов бобовых растений (семейство Leguminosae), к которым относятся, например, клевер, люцерна, соя и горох. Эти бактерии живут в т.н. клубеньках – вздутиях, образующихся на корнях в их присутствии. Из растения бактерии получают органические вещества (питание), а взамен снабжают хозяина связанным азотом. За год таким способом фиксируется до 225 кг азота на гектар. В симбиоз с другими азотфиксирующими бактериями вступают и небобовые растения, например ольха.

Цианобактерии фотосинтезируют, как зеленые растения, с выделением кислорода. Многие из них способны также фиксировать атмосферный азот, потребляемый затем растениями и в конечном итоге животными. Эти прокариоты служат важным источником связанного азота почвы в целом и рисовых чеков на Востоке в частности, а также главным его поставщиком для океанских экосистем.

Минерализация.

Так называется разложение органических остатков до диоксида углерода (CO2), воды (H2O) и минеральных солей. С химической точки зрения, этот процесс эквивалентен горению, поэтому он требует большого количества кислорода. В верхнем слое почвы содержится от 100 000 до 1 млрд. бактерий на 1 г, т.е. примерно 2 т на гектар. Обычно все органические остатки, попав в землю, быстро окисляются бактериями и грибами. Более устойчиво к разложению буроватое органическое вещество, называемое гуминовой кислотой и образующееся в основном из содержащегося в древесине лигнина. Оно накапливается в почве и улучшает ее свойства.

БАКТЕРИИ И ПРОМЫШЛЕННОСТЬ

Учитывая разнообразие катализируемых бактериями химических реакций, неудивительно, что они широко используются в производстве, в ряде случаев с глубокой древности. Славу таких микроскопических помощников человека прокариоты делят с грибами, в первую очередь – дрожжами, которые обеспечивают большую часть процессов спиртового брожения, например при изготовлении вина и пива. Сейчас, когда стало возможным вводить в бактерии полезные гены, заставляя их синтезировать ценные вещества, например инсулин, промышленное применение этих живых лабораторий получило новый мощный стимул. См. также ГЕННАЯ ИНЖЕНЕРИЯ.

Пищевая промышленность.

В настоящее время бактерии применяются этой отраслью в основном для производства сыров, других кисломолочных продуктов и уксуса. Главные химические реакции здесь – образование кислот. Так, при получении уксуса бактерии рода Acetobacter окисляют этиловый спирт, содержащийся в сидре или других жидкостях, до уксусной кислоты. Аналогичные процессы происходят при квашении капусты: анаэробные бактерии сбраживают содержащиеся в листьях этого растения сахара до молочной кислоты, а также уксусной кислоты и различных спиртов.

Выщелачивание руд.

Бактерии применяются для выщелачивания бедных руд, т.е. переведения из них в раствор солей ценных металлов, в первую очередь меди (Cu) и урана (U). Пример – переработка халькопирита, или медного колчедана (CuFeS2). Кучи этой руды периодически поливают водой, в которой присутствуют хемолитотрофные бактерии рода Thiobacillus. В процессе своей жизнедеятельности они окисляют серу (S), образуя растворимые сульфаты меди и железа: CuFeS2 + 4O2® CuSO4 + FeSO4. Такие технологии значительно упрощают получение из руд ценных металлов; в принципе, они эквивалентны процессам, протекающим в природе при выветривании горных пород.

Переработка отходов.

Бактерии служат также для превращения отходов, например сточных вод, в менее опасные или даже полезные продукты. Сточные воды – одна из острых проблем современного человечества. Их полная минерализация требует огромных количеств кислорода, и в обычных водоемах, куда принято сбрасывать эти отходы, его для их «обезвреживания» уже не хватает. Решение заключается в дополнительной аэрации стоков в специальных бассейнах (аэротенках): в результате бактериям-минерализаторам хватает кислорода для полного разложения органики, и одним из конечных продуктов процесса в наиболее благоприятных случаях становится питьевая вода. Остающийся по ходу дела нерастворимый осадок можно подвергнуть анаэробному брожению. Чтобы такие водоочистные установки отнимали как можно меньше места и денег, необходимо хорошее знание бактериологии.

Другие пути использования.

К другим важным областям промышленного применения бактерий относится, например, мочка льна, т.е. отделение его прядильных волокон от других частей растения, а также производство антибиотиков, в частности стрептомицина (бактериями рода Streptomyces).

БОРЬБА С БАКТЕРИЯМИ В ПРОМЫШЛЕННОСТИ

Бактерии приносят не только пользу; борьба с их массовым размножением, например в пищевых продуктах или в водных системах целлюлозно-бумажных предприятий, превратилась в целое направление деятельности.

Пища портится под действием бактерий, грибов и собственных вызывающих автолиз («самопереваривание») ферментов, если не инактивировать их нагреванием или другими способами. Поскольку главная причина порчи все-таки бактерии, разработка систем эффективного хранения продовольствия требует знания пределов выносливости этих микроорганизмов.

Одна из наиболее распространенных технологий – пастеризация молока, убивающая бактерии, которые вызывают, например, туберкулез и бруцеллез. Молоко выдерживают при 61–63° С в течение 30 мин или при 72–73° С всего 15 с. Это не ухудшает вкуса продукта, но инактивирует болезнетворные бактерии. Пастеризовать можно также вино, пиво и фруктовые соки.

Давно известна польза хранения пищевых продуктов на холоде. Низкие температуры не убивают бактерий, но не дают им расти и размножаться. Правда, при замораживании, например, до –25° С численность бактерий через несколько месяцев снижается, однако большое количество этих микроорганизмов все же выживает. При температуре чуть ниже нуля бактерии продолжают размножаться, но очень медленно. Их жизнеспособные культуры можно хранить почти бесконечно долго после лиофилизации (замораживания – высушивания) в среде, содержащей белок, например в сыворотке крови.

К другим известным методам хранения пищевых продуктов относятся высушивание (вяление и копчение), добавка больших количеств соли или сахара, что физиологически эквивалентно обезвоживанию, и маринование, т.е. помещение в концентрированный раствор кислоты. При кислотности среды, соответствующей pH 4 и ниже, жизнедеятельность бактерий обычно сильно тормозится или прекращается.

БАКТЕРИИ И БОЛЕЗНИ

Бактерии были открыты А.Левенгуком в конце 17 в., и еще долгое время считалось, что они способны самозарождаться в гниющих остатках. Это мешало пониманию связи прокариот с возникновением и распространением болезней, препятствуя одновременно разработке адекватных лечебных и профилактических мероприятий. Л.Пастер первым установил, что бактерии происходят только от других живых бактерий и могут вызывать определенные заболевания. В конце 19 в. Р.Кох и другие ученые значительно усовершенствовали методы идентификации этих патогенов и описали множество их видов. Для установления того, что наблюдаемое заболевание вызывается вполне определенной бактерией, до сих пор пользуются (с небольшими модификациями) «постулатами Коха»: 1) данный патоген должен присутствовать у всех больных; 2) можно получить его чистую культуру; 3) он должен при инокуляции вызывать ту же болезнь у здорового человека; 4) его можно обнаружить у вновь заболевшего. Дальнейший прогресс в этой области связан с развитием иммунологии, основы которой заложил еще Пастер (на первых порах тут много сделали французские ученые), и с открытием в 1928 А.Флемингом пенициллина.

Окрашивание по Граму.

Для идентификации болезнетворных бактерий крайне полезным оказался метод окрашивания препаратов, разработанный в 1884 датским бактериологом Х.Грамом. Он основан на устойчивости бактериальной клеточной стенки к обесцвечиванию после обработки особыми красителями. Если она не обесцвечивается, бактерию называют грамположительной, в противном случае – грамотрицательной. Это различие связано с особенностями строения клеточной стенки и некоторыми метаболическими признаками микроорганизмов. Отнесение патогенной бактерии к одной из двух данных групп помогает врачам назначить нужный антибиотик или другое лекарство. Так, бактерии, вызывающие фурункулы, всегда грамположительны, а возбудители бактериальной дизентерии – грамотрицательны. См. также АНТИБИОТИКИ.

Типы патогенов.

Некоторые патогены, т.е. болезнетворные микроорганизмы, могут быть облигатными паразитами, т.е. они способны жить только в теле организма-хозяина. Такова, к примеру, вызывающая сифилис бледная трепонема, или бледная спирохета (Treponema pallidum), которая быстро погибает во внешней среде. Еще сильнее такая особенность выражена у риккетсий (сыпной тиф, пятнистая лихорадка Скалистых гор и др.) и хламидий (трахома, пситтакоз). Эти организмы могут жить только внутри других клеток и так мелки, что их долгое время относили к вирусам. Другие виды обычно живут независимо от каких-либо хозяев, но в особых условиях становятся паразитами. Пример – Pseudomonas aeruginosa, почвенная бактерия, способная иногда инфицировать раны или просто заражать людей с ослабленным здоровьем. Зачастую патогены живут в организме хозяев, не причиняя им вреда, и вызывают болезни лишь при особых обстоятельствах, роль которых не всегда ясна.

Бактерии не могут преодолеть барьер, создаваемый неповрежденной кожей; они проникают внутрь организма через раны и тонкие слизистые оболочки, выстилающие изнутри ротовую полость, пищеварительный тракт, дыхательные и мочеполовые пути и проч. Поэтому от человека к человеку они передаются с зараженной пищей или питьевой водой (брюшной тиф, бруцеллез, холера, дизентерия), с вдыхаемыми капельками влаги, попавшими в воздух при чихании, кашле или просто разговоре больного (дифтерия, легочная чума, туберкулез, стрептококковые инфекции, пневмония) или при прямом контакте слизистых оболочек двух людей (гонорея, сифилис, бруцеллез). Попав на слизистую оболочку, патогены могут поражать только ее (например, возбудители дифтерии в дыхательных путях) или проникать глубже, как, скажем, трепонема при сифилисе.

ЛЕГКИЕ больного туберкулезом

Симптомы заражения бактериями часто объясняют действием токсичных веществ, вырабатываемых этими микроорганизмами. Их принято подразделять на две группы. Экзотоксины выделяются из бактериальной клетки, например, при дифтерии, столбняке, скарлатине (причина красной сыпи). Интересно, что во многих случаях экзотоксины вырабатываются только бактериями, которые сами заражены вирусами, содержащими соответствующие гены. Эндотоксины входят в состав бактериальной клеточной стенки и высвобождаются лишь после гибели и разрушения патогена.

Пищевые отравления.

Анаэробная бактерия Clostridium botulinum, обычно живущая в почве и иле, – причина ботулизма. Она образует очень устойчивые к нагреванию споры, которые могут прорастать после пастеризации и копчения продуктов. В ходе своей жизнедеятельности бактерия образует несколько близких по строению токсинов, относящихся к сильнейшим из известных ядов. Убить человека может меньше 1/10 000 мг такого вещества. Эта бактерия изредка заражает фабричные консервы и несколько чаще – домашние. Выявить на глаз ее присутствие в овощных или мясных продуктах обычно невозможно. В США ежегодно регистрируется несколько десятков случаев ботулизма, смертность при которых составляет 30–40%. К счастью, ботулинотоксин – это белок, поэтому его можно инактивировать непродолжительным кипячением.

Гораздо шире распространены пищевые отравления, вызываемые токсином, который вырабатывается некоторыми штаммами золотистого стафилококка (Staphylococcus aureus). Симптомы – понос и упадок сил; смертельные исходы редки. Этот токсин – также белок, но, к сожалению, очень термостойкий, поэтому кипячением пищи его инактивировать трудно. Если продукты не сильно им отравлены, то, чтобы предотвратить размножение стафилококка, рекомендуется хранить их до употребления при температуре либо ниже 4° С, либо выше 60° С.

Бактерии рода Salmonella также способны, заражая пищу, причинять вред здоровью. Строго говоря, это не пищевое отравление, а кишечная инфекция (сальмонеллез), симптомы которой обычно возникают через 12–24 ч после попадания патогена в организм. Смертность от нее довольно высокая.

Стафилококковые отравления и сальмонеллез связаны в основном с потреблением постоявших при комнатной температуре мясных продуктов и салатов, особенно на пикниках и праздничных застольях.

БАКТЕРИЯ сальмонеллы

Естественная защита организма.

В организме животных существует несколько «линий обороны» против патогенных микроорганизмов. Одну из них образуют белые кровяные тельца, фагоцитирующие, т.е. поглощающие, бактерии и вообще чужеродные частицы, другую – иммунная система. Обе они действуют взаимосвязанно.

Иммунная система очень сложна и существует только у позвоночных. Если в кровь животного проникает чужеродный белок или высокомолекулярный углевод, то он становится здесь антигеном, т.е. веществом, стимулирующим выработку организмом «противодействующего» вещества – антитела. Антитело – это белок, который связывает, т.е. инактивирует, специфический для него антиген, часто вызывая его преципитацию (осаждение) и удаление из кровотока. Каждому антигену соответствует строго определенное антитело.

Бактерии, как правило, тоже вызывают образование антител, которые стимулируют лизис, т.е. разрушение, их клеток и делают их более доступными для фагоцитоза. Часто можно заранее иммунизировать индивида, повысив его естественную сопротивляемость бактериальной инфекции.

Кроме «гуморального иммунитета», обеспечиваемого циркулирующими в крови антителами, существует иммунитет «клеточный», связанный со специализированными белыми кровяными тельцами, т.н. T-клетками, которые убивают бактерии при прямом контакте с ними и с помощью токсичных веществ. T-клетки нужны и для активации макрофагов – белых кровяных телец другого типа, также уничтожающих бактерии.

Химиотерапия и антибиотики.

Поначалу для борьбы с бактериями применялось очень мало лекарств (химиотерапевтических препаратов). Трудность заключалась в том, что, хотя эти препараты легко убивают микробов, зачастую такое лечение вредно для самого больного. К счастью биохимическое сходство человека и микробов, как теперь известно, все же неполное. Например, антибиотики группы пенициллина, синтезируемые определенными грибами и используемые ими для борьбы с бактериями-конкурентами, нарушают образование бактериальной клеточной стенки. Поскольку у клеток человека такой стенки нет, эти вещества губительны только для бактерий, хотя иногда они и вызывают у нас аллергическую реакцию. Кроме того, рибосомы прокариот, несколько отличные от наших (эукариотических), специфически инактивируются антибиотиками типа стрептомицина и хлоромицетина. Далее, некоторые бактерии должны сами обеспечивать себя одним из витаминов – фолиевой кислотой, а ее синтез в их клетках подавляют синтетические сульфамидные препараты. Сами мы получаем этот витамин с пищей, поэтому при таком лечении не страдаем. Сейчас против почти всех бактериальных патогенов существуют природные или синтетические лекарственные средства.

Здравоохранение.

Борьба с патогенами на уровне индивидуального больного – только один из аспектов применения медицинской бактериологии. Не менее важно изучение развития бактериальных популяций вне организма больного, их экологии, биологии и эпидемиологии, т.е. распространения и динамики численности. Известно, например, что возбудитель чумы Yersinia pestis живет в теле грызунов, служащих «природным резервуаром» этой инфекции, и переносчиками ее между животными являются блохи.Если в водоем попадают канализационные стоки, там в течение некоторого периода времени, зависящего от различных условий, сохраняют жизнеспособность возбудители ряда кишечных инфекций. Так, щелочные водохранилища Индии, где pH среды меняется в зависимости от времени года, – весьма благоприятная среда для выживания холерного вибриона (Vibrio cholerae) (см. также ХОЛЕРА).

Информация такого рода крайне важна для работников здравоохранения, занимающихся выявлением очагов распространения болезней, прерыванием путей их передачи, осуществлением программ иммунизации и другими профилактическими мероприятиями.

См. также ЭПИДЕМИЯ.

ИЗУЧЕНИЕ БАКТЕРИЙ

Многие бактерии нетрудно выращивать в т.н. культуральной среде, в состав которой могут входить мясной бульон, частично переваренный белок, соли, декстроза, цельная кровь, ее сыворотка и другие компоненты. Концентрация бактерий в таких условиях обычно достигает примерно миллиарда на кубический сантиметр, в результате чего среда становится мутной.

Для изучения бактерий необходимо уметь получать их чистые культуры, или клоны, представляющие собой потомство одной-единственной клетки. Это нужно, например, для определения того, какой вид бактерии инфицировал больного и к какому антибиотику данный вид чувствителен. Микробиологические образцы, например, взятые из горла или ран мазки, пробы крови, воды или других материалов, сильно разводят и наносят на поверхность полутвердой среды: на ней из отдельных клеток развиваются округлые колонии. Отверждающим культуральную среду агентом обычно служит агар – полисахарид, получаемый из некоторых морских водорослей и почти ни одним видом бактерий не перевариваемый. Агаровые среды используют в виде «косячков», т.е. наклонных поверхностей, образующихся в стоящих под большим углом пробирках при застывании расплавленной культуральной среды, или в виде тонких слоев в стеклянных чашках Петри – плоских круглых сосудах, закрываемых такой же по форме, но чуть большей по диаметру крышкой. Обычно через сутки бактериальная клетка успевает размножиться настолько, что образует легко заметную невооруженным глазом колонию. Ее можно перенести на другую среду для дальнейшего изучения. Все культуральные среды должны быть перед началом выращивания бактерий стерильными, а в дальнейшем следует принимать меры против поселения на них нежелательных микроорганизмов.

Чтобы рассмотреть выращенные таким способом бактерии, прокаливают на пламени тонкую проволочную петлю, прикасаются ею сначала к колонии или мазку, а затем – к капле воды, нанесенной на предметное стекло. Равномерно распределив взятый материал в этой воде, стекло высушивают и два-три раза быстро проводят над пламенем горелки (сторона с бактериями должна быть обращена вверх): в результате микроорганизмы, не повреждаясь, прочно прикрепляются к субстрату. На поверхность препарата капают краситель, затем стекло промывают в воде и вновь сушат. Теперь можно рассматривать образец под микроскопом.

Чистые культуры бактерий идентифицируют главным образом по их биохимическим признакам, т.е. определяют, образуют ли они из определенных сахаров газ или кислоты, способны ли переваривать белок (разжижать желатину), нуждаются ли для роста в кислороде и т.д. Проверяют также, окрашиваются ли они специфическими красителями. Чувствительность к тем или иным лекарственным препаратам, например антибиотикам, можно выяснить, поместив на засеянную бактериями поверхность маленькие диски из фильтровальной бумаги, пропитанные данными веществами. Если какое-либо химическое соединение убивает бактерии, вокруг соответствующего диска образуется свободная от них зона.

Источник: www.krugosvet.ru

Бактерії гниття

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.